

AFIT Digital Innovation & Integration Center of Excellence DIICE – "We put the odds in your favor" Col Jason Anderson, PhD, AFIT/EN (Director) Mr. Rick Sugarman, AFIT/LS (LS Lead)

LtCol Amy Cox, PhD, AFIT/EN (EN Lead) LtCol Paul Beach, PhD, AFIT/EN (Deputy)

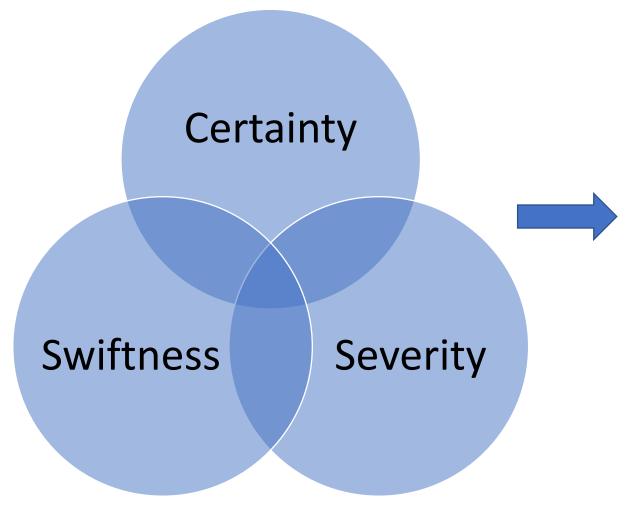
First-Thank you

- It has been a long road, but all those previous efforts have been instrumental in standing up the Digital Innovation and Integration Center of Excellence. Thank you for all the help!
- Thank you to AFMC for providing the resources necessary for DIICE

Why Digital

🚫 quixy

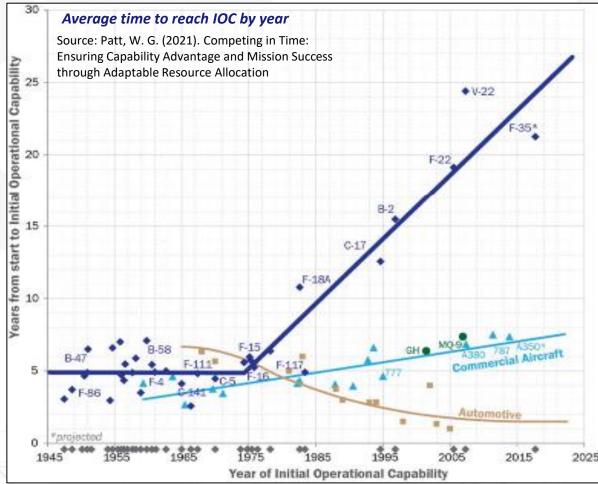
"THE ENTERPRISE THAT DOES NOT INNOVATE AGES AND DECLINES, AND IN A PERIOD OF RAPID CHANGE SUCH AS THE PRESENT, THE DECLINE WILL BE FAST."


> - PETER DRUCKER, AMERICAN-AUSTRIAN CONSULTANT -

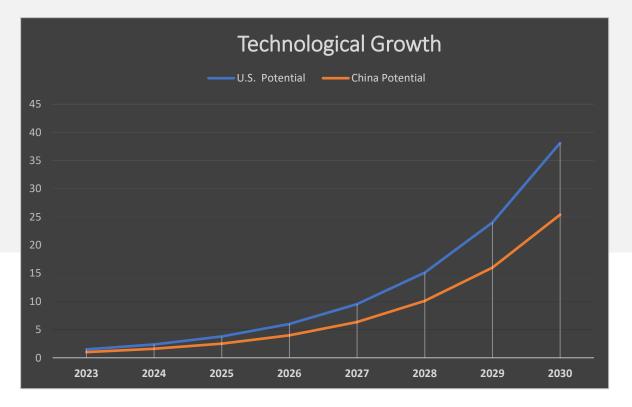
We have a window of opportunity to accelerate changes now. And personally, Id rather drive than ride; if we fail, it won't be for lack of trying. This is a journey and we are just starting.

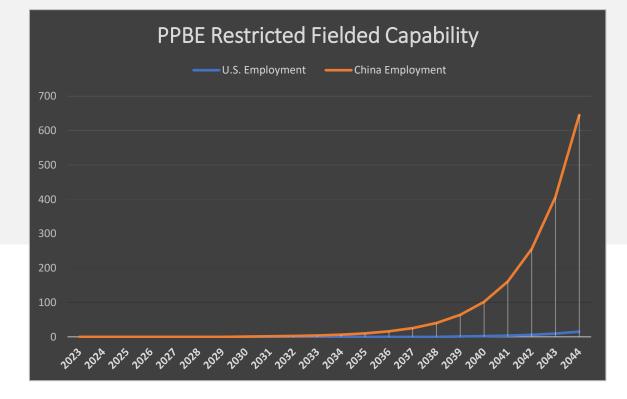
General Charles Q. Brown, Jr.

Principles of Deterrence

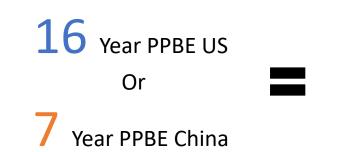


Certainty, swiftness, and severity are all predicated on your **capability** compared to your enemies

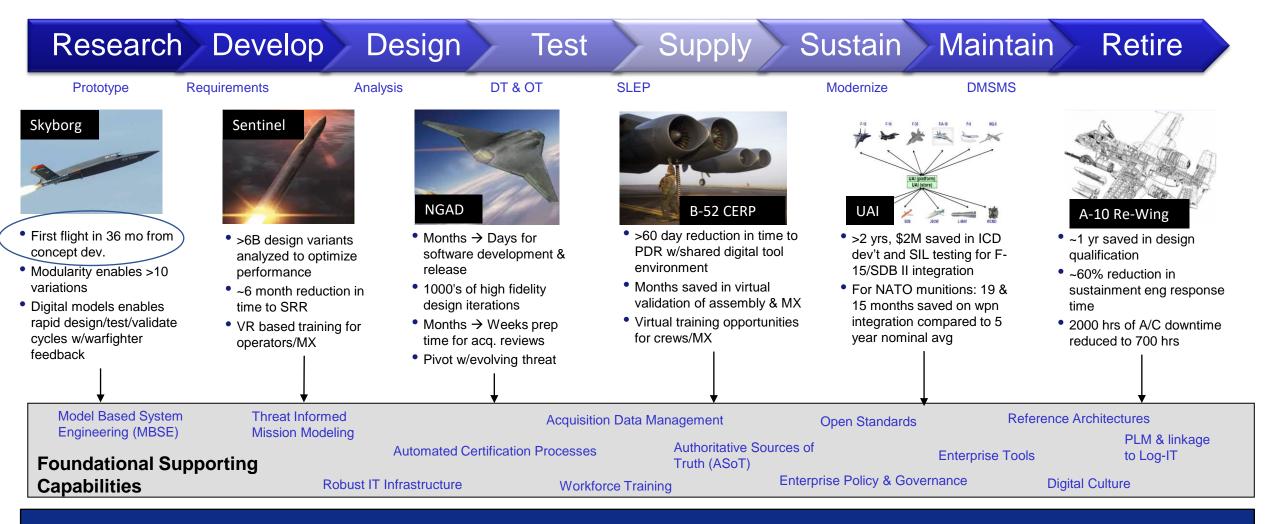

Competing in Time


- "it takes the <u>US on average sixteen years</u> to deliver an idea to operational capability, versus <u>fewer than</u> <u>seven for China</u>"
- "The <u>PPBE's inflexibility increases the difficulty of</u> rapidly shifting funding to emergent innovations"
- "Defense acquisition process and legacy defense industrial base approach struggle to accommodate timely adoption of these emerging technologies"
- "<u>Competitive advantage</u> in decision-centric operations (whether budgeting or on the battlefield) <u>comes from</u> the scale of available options, tempo of decisionmaking, and superior decision processes"

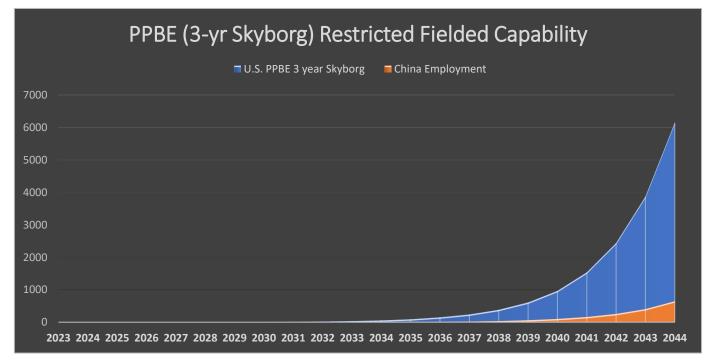
Digital Transformation yields smarter, faster decision making; but flexible funding and agility in HOW we resource is essential


Competitive Advantage

1.5x -


U.S. Technological Advantage

42.6x


China Capability Advantage

Better Capability, Faster

Overcoming silo's and enabling enterprise scale requires enterprise investment

Technological Advantage Overlayed w/ Skyborg PPBE

9.5x

U.S. Capability Advantage

The Sensible Path

- Control that which you can control!
- Does MBSE, DE, and Digital Integration Enable Faster Decision Making by Expediting <u>Our Expansive Decision-Making</u> <u>Processes?</u>

THINKS YOU CAN CONTROL THINGS THAT MATTER WHAT YOU SHOULD FOLLS ON

Image from https://www.lutz.us/focus-efforts-control/

AFIT Multi-disciplinary Research Centers

Vision and Characteristics

Characteristics of DIICE

- *Digitally* capable deliver digital solutions
- *Innovative* future focused people that ensure the warfighters are ready
- *Integrative* people who understand the domain, so the right solutions emerge
- *Connective* collaboration occurs after connection
- *Enabling* focus on producing, and empowering our customers

Vision Statement:

• "Our vision for the Digital Innovation_and Integration Center of Excellence is to be the premier provider of advanced <u>digital solutions</u> to the Air Force. We will be digitally capable, fostering a culture of <u>innovation</u>, and be at the forefront of digital engineering advancements that provide the Air Force with <u>integrative</u> solutions for a decisive advantage in the digital battlefield. We will <u>enable</u> our team of experts to push the boundaries of what is possible and develop solutions that drive <u>real value for the warfighter and the nation</u>. Our center will be a hub of <u>connection</u> and knowledge sharing, attracting the brightest minds and fostering partnerships with industry and academia."

DIICE: Four Lines of Effort with DTO Alignment

Legend: 1=Directly creating and shaping outcomes, 2=Influencing outcomes

- LOE 1: Education Excellence
- LOE 2: Research and Tech Transfer

Training

1

2

2

2

Standards

2

2

2

1

• LOE 3: Consulting

LOF 4: Best Practices

2

1

2

2

DIICE SWOT Analysis

 Strengths MBSE capabilities from EN/LS (Mature and growing) DTO/AFMC proximity Dayton Digital Collaboration (Govt, Industry, Academic) 	Weakness Availability of MBSE SMEs Digital Approach is in its infancy, potential for high impact
 Opportunities Bring together AFITs multifunctional centers/schools for synergistic impact (research, education, consulting, best practices) Leverage DAF student research 	Threats Size of digital scope across acquisition lifecycle Leadership turnover Cultural challenges Availability of tools and architecture Policy maturity

Digital Literacy – Continuing Education with AFIT/LS

Digital Acquisition & Materiel Management continuing education provided by the School of Systems & Logistics (AFIT/LS)

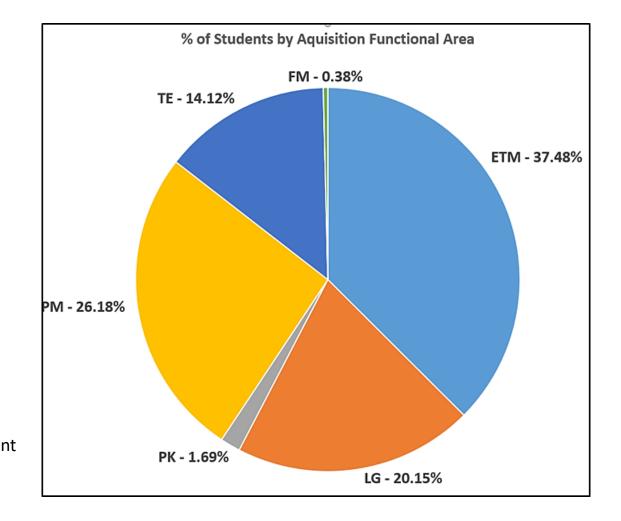
- Primarily funded by SAF/AQH (DAWDA)
- "Digital" context in many existing courses and workshops

Highlighted education:

- WKSP 0732*: Current Topics in Digital Acquisition & Digital Materiel Management
- WKSP 0696*: Applied MBSE Using SysML
- SYS 282: Mgmt of the Systems Engineering Process
- Avolve Learning Paths*
 - * Free to eligible defense industry contractors

- Formal Courses & Workshops
- Educational Resources
- Research & Consulting

https://www.afit.edu/ls



Digital literacy at AFIT https://www.afit.edu/DIGLIT/

WKSP 0732: Current Topics in Digital Acquisition and Digital Materiel Management

- Multiple offering, various topics
- Over 700 students taught in one year since March 2022
- Multifunctional student attendance (see pie chart)
- Subject matter expert presenters

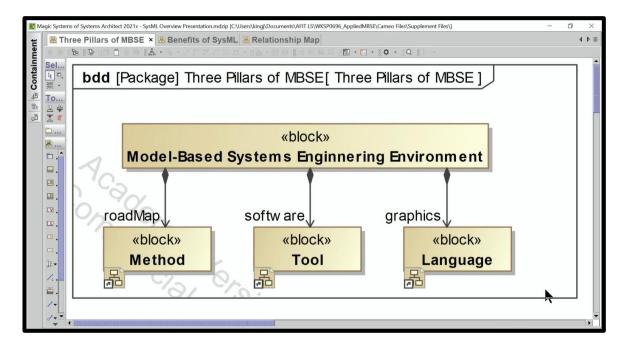
WKSP 0732: Current Topics in Digital Acquisition and Digital Materiel Management

2022 Topics

- Digital Acquisition Overview Awareness
- Test and Evaluation within the Digital Transformation
- Introduction to User Experience (UX) Design
- Digital Acquisition and Risk Management
- Modeling and Analyzing System Requirements
- Unified Architecture Framework (UAF) Versus the Department of Defense Architecture Framework (DoDAF)
- A Short Introduction to the Unified Architecture Framework (UAF)
- Using the Systems Modeling Language (SysML) within the Unified Architecture Framework (UAF)
- Updates on Digital Engineering and Test & Evaluation from the DE T&E Summit
- Parallel Modeling Networked Cooperative Autonomous Munitions
- Model-Based Request for Information Strategies
- Using Avolve for Digital Transformation Education
- Development of a Model-Based Framework on User Toolkits
- A Systems Thinkers Look at the Digital Transformation
- Model-Based Monte Carlo Simulations

2023 Topics (Currently scheduled thru May)

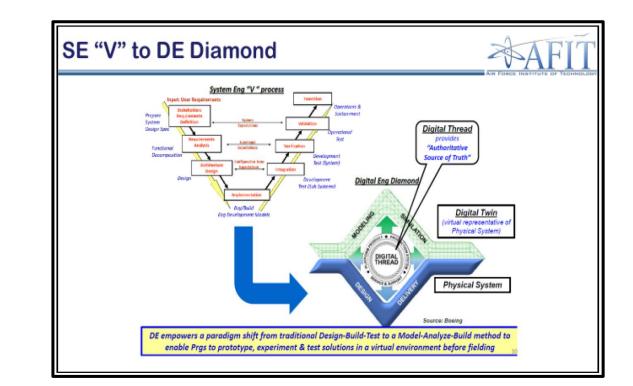
- An Agile Mindset and Manifesto
- Acquisition / Engineering Transformation & Modernization
- Risk & Requirements Collaboration in Digital Materiel Management
- A Short Introduction to the Unified Architecture Framework (UAF) v1.2
- Using SysML for Requirements Management
- A Systems Thinkers Look at the Digital Transformation
- DAF Digital Guide Website Review
- Design Trade Studies Using SysML
- Agile Model-Based Systems Engineering
- Using Avolve for Digital Transformation Education


To sign up for an offering(s), go to <u>https://forms.osi.apps.mil/r/UXuQfpZM64</u>. This sign-up form is accessible via DAF365/AFNET.

Recordings of some previous offerings are found on the Avolve website at <u>https://avolve.apps.dso.mil</u>. Type in the topic name in the search bar.

WKSP 0696: Applied MBSE Using SysML

- Hands-on intro for all functional career fields
- Teaches foundations of how to create and use a system model using the SysML language and the CATIA Magic Systems of Systems Architect (formerly Cameo Systems Modeler) tool
- https://www.afit.edu/LS/course.cfm?c=353


Location	Offering #	Start Date	End Date	
WPAFB, OH	231	14 Mar 2023	15 Mar 2023	
Live Internet	23J	04 Apr 2023	07 Apr 2023	
Live Internet	23K	02 May 2023	05 May 2023	
WPAFB, OH	23L	31 May 2023	01 Jun 2023	
Edwards AFB, CA 23M-O		21 Jun 2023	22 Jun 2023	
Live Internet	23N	25 Jul 2023	28 Jul 2023	
WPAFB, OH	230	29 Aug 2023	30 Aug 2023	
Live Internet	23P	19 Sep 2023	22 Sep 2023	

SYS 282: Management of the Systems Engineering Process

- Presents activities and tools for implementing and managing the SE process during various phases of the system life cycle, and the interactions between SE and all disciplines/functions
- https://www.afit.edu/LS/course.cfm?c=85

Location	Offering #	Start Date	End Date		
Kirtland AFB, NM	23G-0	21 Mar 2023	23 Mar 2023		
WPAFB, OH	23H	11 Apr 2023	13 Apr 2023		
Tinker AFB, OK	231-0	18 Apr 2023	20 Apr 2023		
Live Internet	23J	01 May 2023	19 May 2023		
Lackland AFB TX 23K-O		06 Jun 2023	08 Jun 2023		
Edwards AFB, CA 23L-O		27 Jun 2023	29 Jun 2023		
Robins AFB, GA	23M-0	11 Jul 2023	13 Jul 2023		
Offutt AFB, NE	23N-O	08 Aug 2023	10 Aug 2023		
Peterson SFB, CO 23O-O		22 Aug 2023	24 Aug 2023		
Live Internet	23P	11 Sep 2023	29 Sep 2023		

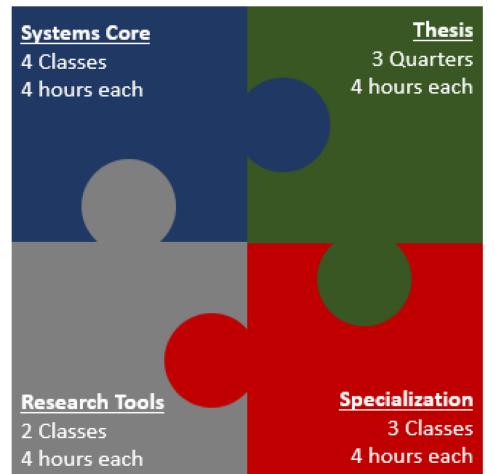
https://avolve.apps.dso.mil

(Note: 1st login requires setting up a Platform One & Avolve account)

- Content organized into domain "hubs" & "tag" searchable
- Knowledge-centric vs. Organizationcentric
- CAC authenticated IL-4 certified

- Content sharing application with Netflix/YouTube-type of look & feel
- Crowd-sourcing of content, increased accessibility to DoD-focused content

	new digital air force	X Q, SEARCH					٥	Richard
Номе						Related Content		< 1/2 >
MY LIBRARY		THE NEW DIGITAL				ut the series and series → ▲ 12:35 Page of Academic Series	The New Digital Air & Space Force Richard Sugarman • a 513 views	e Weap
		U.S. AIR FORCE	SPACE FORCE				Digital Acquisi Rob Roseman + 5 mon AFIT content s the Digital Richard Sugarman + a	ths ago supporting
					•••		Acquisition Transfor Digital Awareness a AFIT School of Systems and Log 4 days ago	nd
	UPLOADED BY: Richard Sugarman a year ago	of Air & Space Force Weapon Sys AUTHORED BY: AFIT/LS re Dept of the Air Force, and why we need to mo		513 views 👍 Liked	9 Likes 🐽	Companies guide to AFT's video:	Companion Guid AFIT's New Dig N Richard Sugarman • a 31 views	Agmt
		describe a component is not enough. With the sl rough the dimension of time, by running simulati					< 1/2 >	


- Curated paths of content designed to support Agile Airman concepts
 - Learner-centric
 - Competency-based
 - Accessible anywhere/anytime
- Three Digital-related Learning Paths available now:
 - Acquisition Transformation: Digital Awareness and Overview
 - Intro to Modular Open Systems Approaches
 - Foundations of Agile and DevOps

Log into Avolve at <u>https://avolve.apps.dso.mil</u> Click on Learning Paths on left-hand menu

If you do not have CAC-access, can still learn more about Avolve at: <u>https://www.afit.edu/CYBER/page.cfm?page=1849</u>

LOE 1.2: Graduate Education - Systems Engineering

Modular Master's Degree

- Fully online/residence
- Digital/modeling core
- 7 domain specializations
- Thesis/Capstone options
- Defense focused
- Certificate option

By the Numbers:

2003 to 2022: 1009 grads AY 2002: 1 grad AY 2022: 108 grads

- 3 PhDs (1 res, 2 part-time)
- 27 MS Thesis (19 res, 8 part-time)
- 27 ME Capstone (20 res, 7 part-time)
- 51 Graduate Certificates (SAF/AQ Sponsored)

Model-Based SE Foundation with Defense Specializations and Research

5/16/2023

Enlisted

Global Reach to Total Force:

Contractor

Civilian

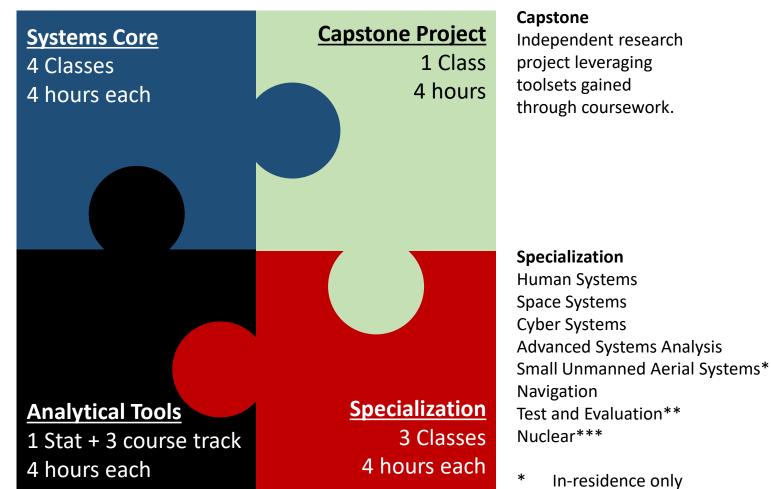
Systems Engineering (GSE) Independent Research Focus (Thesis)

SE Foundations	Systems Core	<u>Thesis</u>
(SENG 520)	4 Classes	3 Quarters
Agile Software	4 hours each	4 hours each
(SENG 593) Architecture		
(SENG 640)		
(SENG 640) Select One:	_	
Advanced Topics (SENG 670)		
Project Management		
(SENG 610)		
(3610 010)		
Statistics		
MATH or STAT at 500		
or higher	Research Tools	Specialization
Research Methods	2 Classes	3 Classes
(RSCH 630)		4 hours each
· ·	4 hours each	4 nours each

Thesis

Intensive independent research effort leveraging toolsets gained through coursework.

Specialization


Human Systems Space Systems Cyber Systems **Advanced Systems Analysis** Small Unmanned Aerial Systems* Navigation Test and Evaluation**

- * In-residence only
- ** Separate selection process

Applied Systems Engineering Tools Focus (Capstone)

SE Foundations (SENG 520) Agile Software (SENG 593) Architecture (SENG 640) Select One: Project Management (SENG 610) Advanced Topics (SENG 670)

Statistics MATH or STAT at 500 or higher Analysis Track (pick one) Advanced System Analysis Test and Evaluation**

- * Separate Competitive Process
- *** ASE program only

How long does it take? How many students?

	FA23	WI24	SP24	SU24	FA24	WI25	SP25	SU25	FA25	WI26	SP26	SU26
40 RS		SE Core/C	Certificate		STAT		Domain Track	(ŀ	Analysis Track	<	Capstone
40 DL	SE Core/Certificate ST			STAT	Specialization			Methods Thesis				
	20 DL SE Core/Certificate				Degree Follow-on to meet student's needs							
	20 DL SE Core/Certifica			Certificate	Degree Follow-on to meet student's needs							
		20 DL SE Core/Certific			Certificate	Degree Follow-on to meet student's needs				eds		

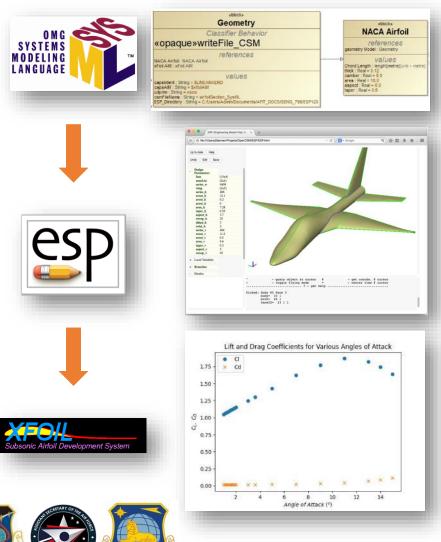
- AFIT resources (RS): We have 40 resident (RS) openings each fall. Priority to military assignment system.
- AFIT resources (DL): We have 20 distance learning (DL) openings each fall. Priority to any sponsored students.
- AFMC/ENS (DL): 20 openings each fall and spring (40 total). Priority to AFMC sponsored personnel.
- Digital Center (DL): We have 20 DL openings each Winter and Summer (40 total). Priority to AFMC.
- Total annual starts: 140
- Year round quarterly starts for online, fall starts for in residence

Who can legally be an AFIT student

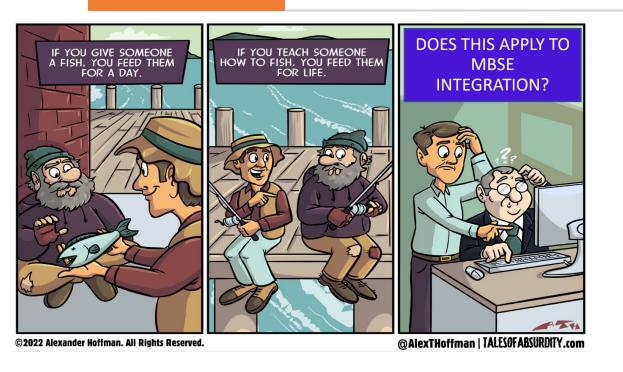
- Air Force and Space Force Personnel (all civilian and military)
- All federal government (ex. NASA, DOE, DHS)
- Any DoD CAC holders (ex. Air Force contractors)
- Critical infrastructure (ex. ODOT)

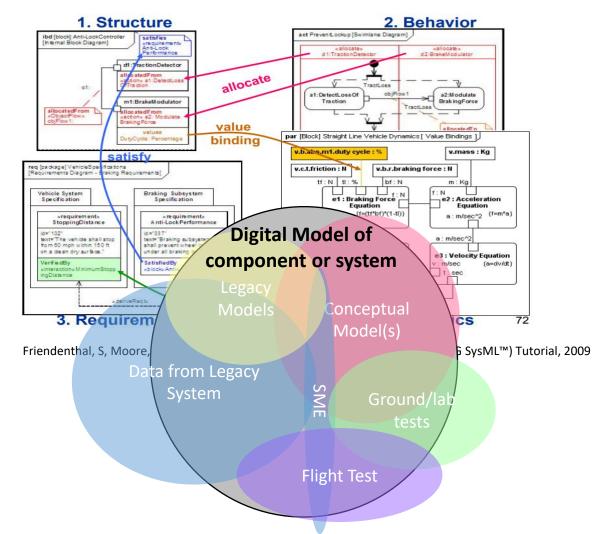
Would you like to know more?

- (937) 255-3636 ext:4626
- <u>https://www.afit.edu/ENV/</u>

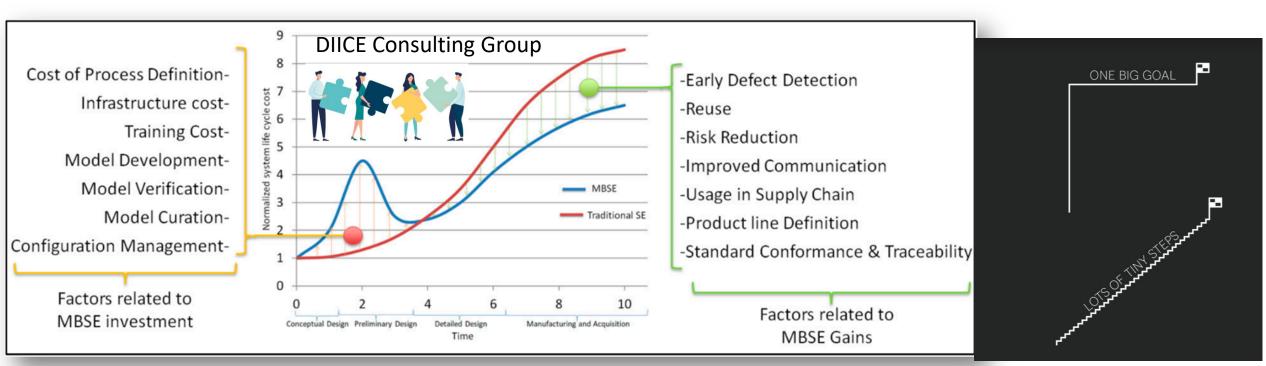


LOE 2: Applied Research


- Model Integration
 - Python
 - AFSIM
 - MATLAB
 - Engineering Sketch Pad
- Reference Architectures
 - Human Systems
 - Weapons, UAS, CubeSat
 - Automated Processes
 - Digital Twins


- Transition: Legacy to Digital
 - Air Worthiness and Test
 - Requirements and Acquisition
 - Model Validation

- Mission
 - Mission engineering
 - Wargaming
 - Reverse engineering

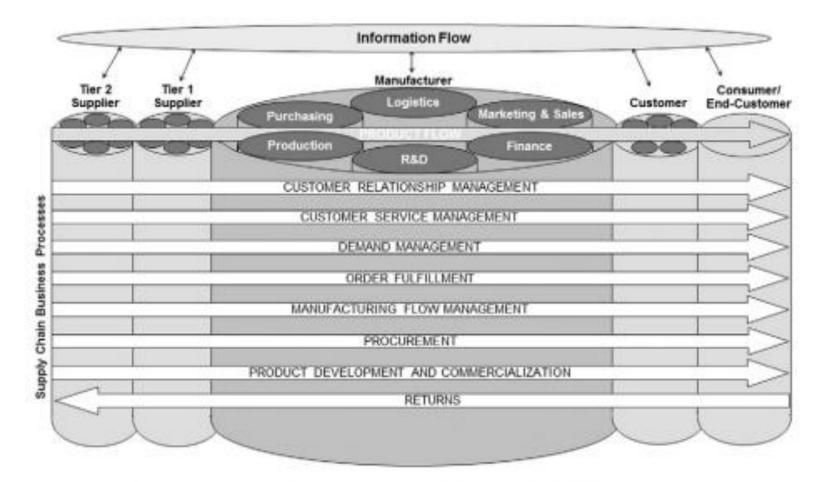


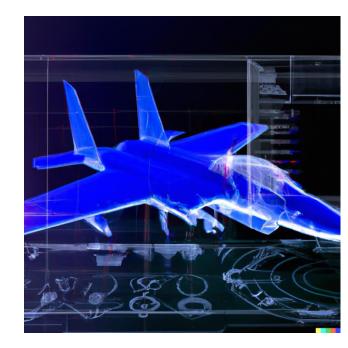
LOE 3: Consulting Development Art of the Feasible



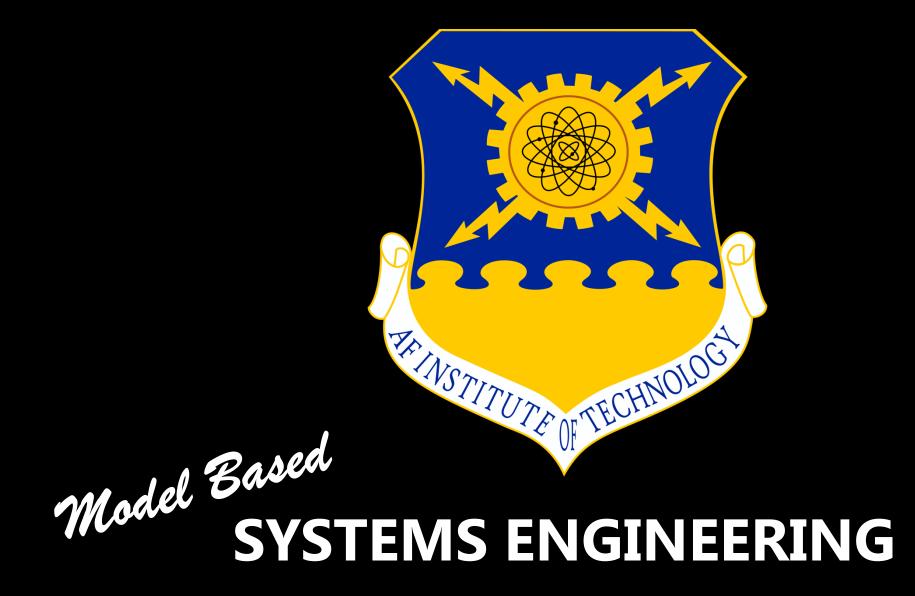
LOE 3: Consulting

Ref: Madni, A. Purohit, Shatad (2019) Economic Analysis of Model-Based Systems Engineering. Systems, 7(12), 1-18


Goal – Provide AFMC Programs the means to get over the digital hump by delivering models, education, and strategies to the level they can sustain.


LOE 4: Best Practices

- LOEs 1-3 culminate into Best Practices from DIICE and integrate them with others into the Digital Guide
- Useful Artifacts
 - Best Practices are created through Research Efforts, Use Cases, Education, and synergized Collaboration with Industry, Government, and Academia that inform future efforts, policy, standards, education, and research.
 - Annual Publications and Repository of Accessible MBSE Research (Typology, with Artifacts)

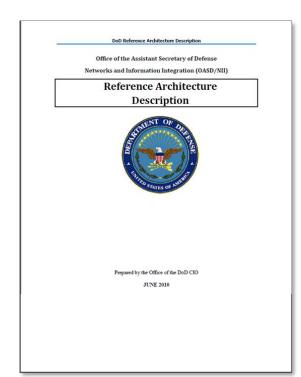

Last thoughts

DALL-E Art

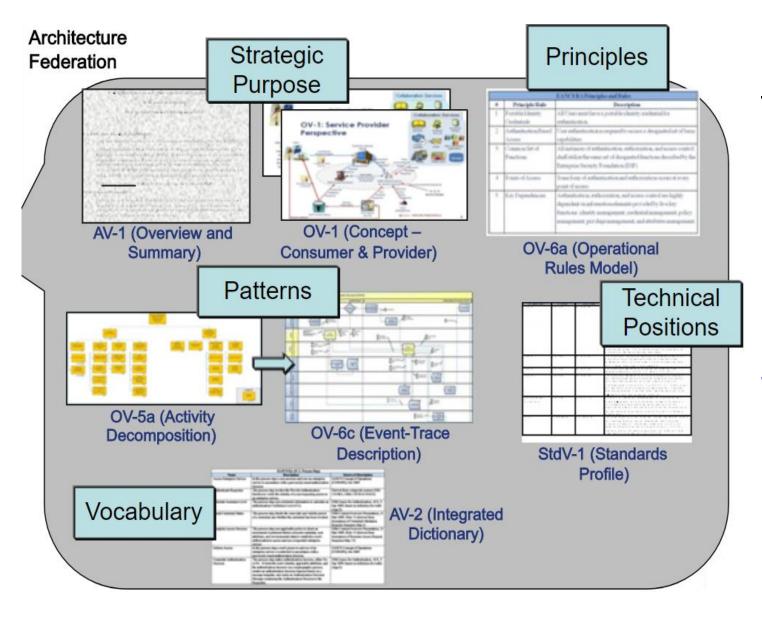
Fig. 1. The supply chain management framework in 2000 (Source: Lambert & Cooper, 2000).

Use of MBSE and a Reference Architecture in a Rapid Prototyping Environment

John Colombi, Ph.D., john.colombi@us.af.mil David Jacques, Ph.D., David.jacques@us.af.mil Professors of Systems Engineering Department of Systems Engineering and Management


The views expressed are those of the authors and do not reflect the official policy or position of the United States Air Force, United States Space Force, the Department of Defense, or the United States Government.

Acknowledgement to our many students


- Definition: "An authoritative source of information about a specific subject area that <u>guides and constrains the instantiations of multiple</u> <u>solution architectures</u>".*
 - An RA is typically company/consortium or domain focused, captures a shared understanding across multiple products, and are based on concepts proven in practice
- Roles:**
 - Provide a common language across stakeholder
 - Provide consistency of implementation
 - Supporting the validation of solutions against proven RA
 - Encourage adherence to standards, specifications, and patterns

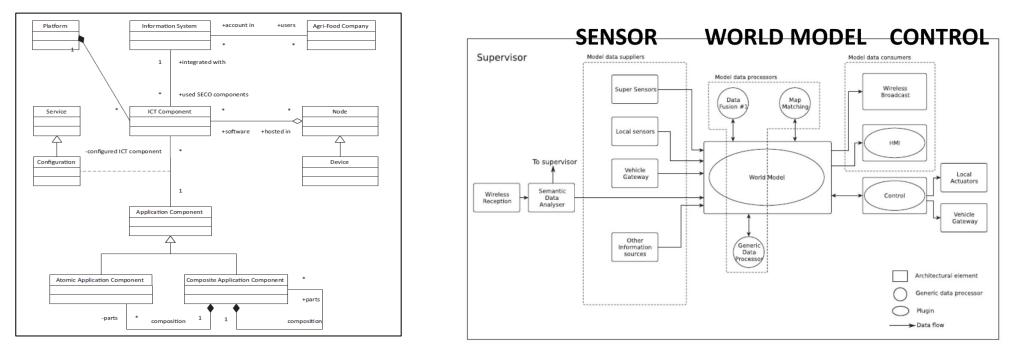
Contents

<u>Historic</u>

Generally

- Purpose, Logical Structure
- Interconnection and Interface Patterns
- Standards
- Glossary

<u>Modern</u>

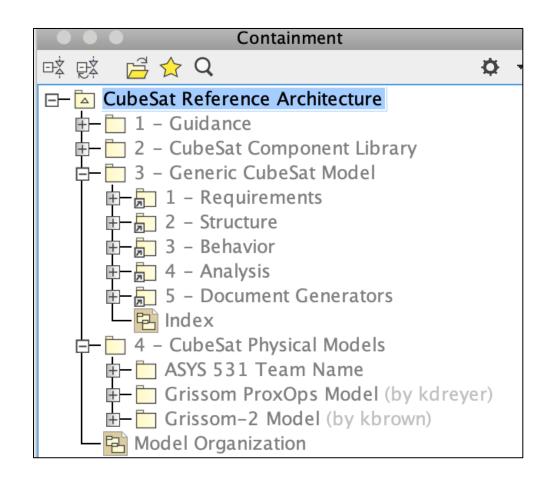

Historic +

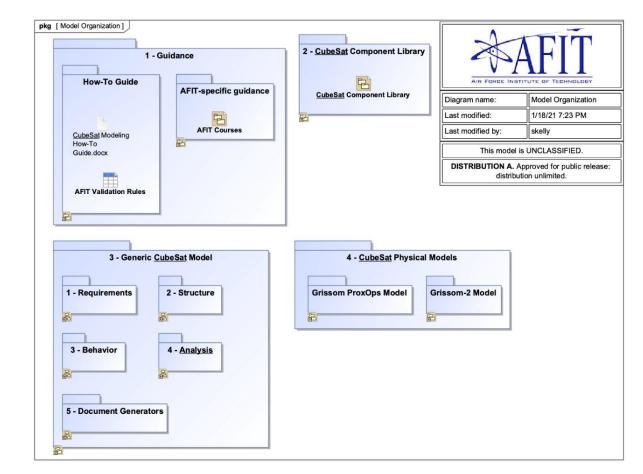
Distributed for DE Tool use Style Guide, Report Generation Component Library, Requirements Design Method/Activities Validation Suites/Rules

- Meisson and Volsard RA for Early Warning for disaster management
- Kruize, Wolfert et.al. RA for development of Farm Software Ecosystems
- Branscomb, Paredis et.al. RA for Vehicle Architecture Modeling Framework
- Behere, Torngren et.al. RA for cooperative driving
 - Guidelines for cooperative adaptive cruise control system for commercial trucks

Autonomous System Reference Architecture (ASRA)

- Models and simulation developed, implemented and tested in conjunction with AFIT Autonomy and Navigation Technology (ANT) Center
- Distributed, collaborative heterogeneous multi-vehicle missions
- Reference Architecture for CubeSat Development
 - Models that serve as basis for design, analysis, V&V of future missions launched by AFIT Center for Space Research and Assurance (CSRA)


Small UAV Reference Architecture


- Models for use in UAS design sequence (design-build-test)
- Typical use cases, functions, logical and physical architectures (multi-rotor, fixed wing and hybrid), COTS component library + Extensions

- Kaslow, Ayres, et.al.* MBSE Reference Model for development of Cubesats
 - Partnering with the Object Management Group (OMG) and the International Council on Systems Engineering (INCOSE)
 - Help Cubesat developers proceed from conceptual need to on-orbit operations

Support Student Workflow

Index of most important efforts (and diagrams)

Requirements

Source Documentation:

Required Capabilities and Design Constraints: Required Capabilities Table Design Constraints Table Required Capabilities and Design Constraints Traceability Matrix Mission Need Statement Operational Context Goals and Objectives Table

Stakeholder <u>Analysis</u>: Stakeholders and Their Concerns List of Stakeholder Needs Stakeholder Needs to Concerns Matrix Stakeholder Needs to MCD Matrix

Mission Requirements:

Mission Requirements Table Mission Requirements Traceability Matrix Mission Requirements Derivation Matrix

Key Performance Parameters: Key Performance Parameters Table Key Performance Parameters Traceability Matrix

System Requirements: System Requirements Table SR to MR Traceability Matrix

Subsystem Requirements: Subsystem Requirements Table D Subsystem Requirements Derivation Matrix Structure Biggin Context bdd

Mission Context: Mission Context Simplified Mission Context

Operational Domain:

Environment: <u>
RubeSat Environment bdd</u>

CubeSat: CubeSat bdd (additional layers linked within) CubeSat State Machine

Launch Vehicle: <u>
Runch Vehicle bdd</u>

Ground Segment: <u>
BMC3 Remote Ground Terminal bdd</u>

Orbit: <u>
Bission Parameters bdd</u> Behavior Behavior Organization

OV-1:
COV-1 - High Level Operational Concept

Mission Phases: Mission Phases Mission Phases

Use Cases: <u>Operational Use Cases</u> <u>Operational Use Case Descriptions</u>

Fault Management: E Fault Management Fault Management

CubeSat Activities:

Analysis Analysis Organization

Trade Studies:

Verification <u>Analysis</u> (parametric diagrams): Thermal Analysis Model <u>Power Analysis</u> <u>Image Quality Analysis</u> <u>Crbit Analysis</u> <u>MMT Integration</u> <u>Uplink Analysis</u>

Hardware Tests: Hardware Tests Subsystem Requirements Verification Table Document Generators

Mission Capabilities Document (<u>MCD</u>):

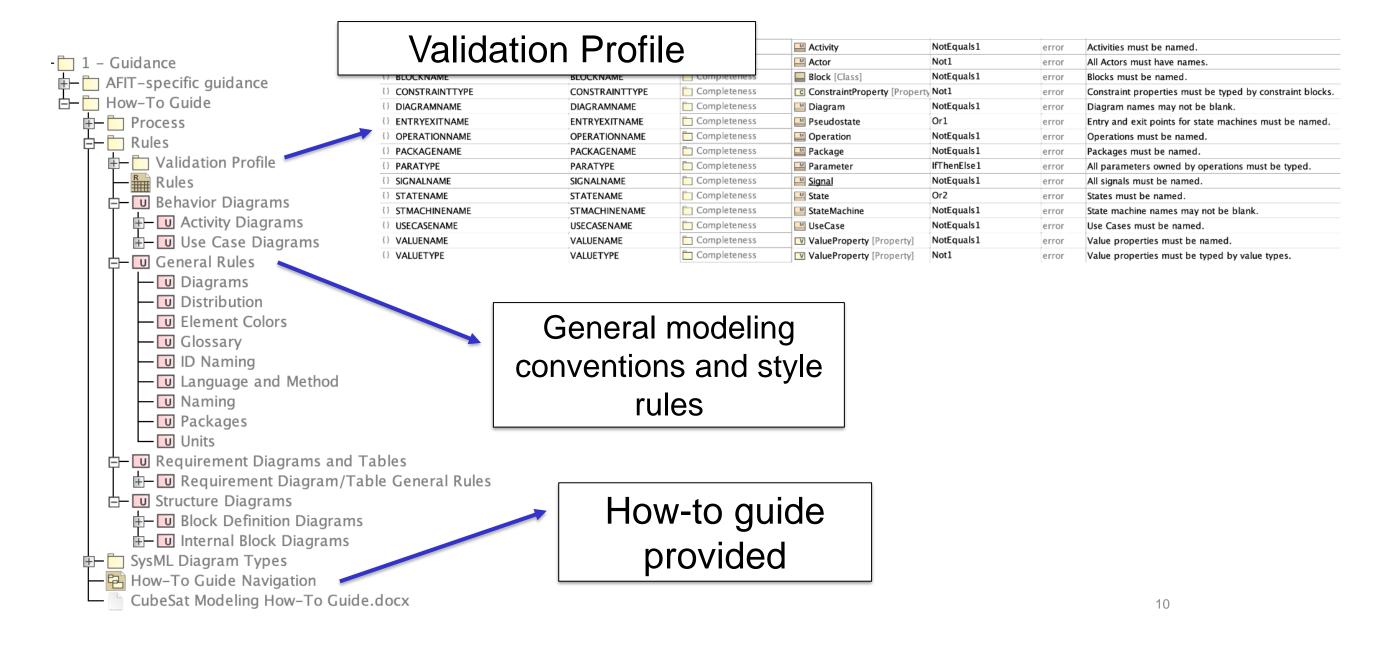
Stakeholder <u>Analysis</u> Report (<u>SAR</u>):

CONOPS:

Mission Requirements Document:

Operational Requirements Document:

Space Vehicle Requirements Document:


Test Plan & Report:

Generic Model Template:

System Modeling Guidance

: Orbit

Common constants for analysis

altitude : distance[km]

period : time[minutes]

mu_earth : km^3/s^2

earth radius : distance/km

{%% Constants

%% Variable

% surface treatment % https://www.tiodize.com/emissivity/

rho = asin(Re/(Re+h));

step = 0:

while diff > .25

step = step +1: %orbit counte

('ReITol'.1e-9.'AbsTol'.1e-9):

egration over sunlit conditions tspan_sun = [0 TS*60];

S = 1353; %W/m^2 Solar flux S ecl = 0; % Solar flux in eclipse

albedo = 0.33; % average Earth albedo

%% Period and Eclipse Calculations

% values for Type II TIODIZE PROCESS coatings

TE = round(rho/pi*P); % Eclipse time (minutes) TS = P-TE; % Sunlit time (minutes)

To = 293.15; %K - Initial temperature estimate

%% Thermal Calculations to determine equilibrium state during nominal op

«constraint

40 50 60

Time since exiting eclipse, minutes

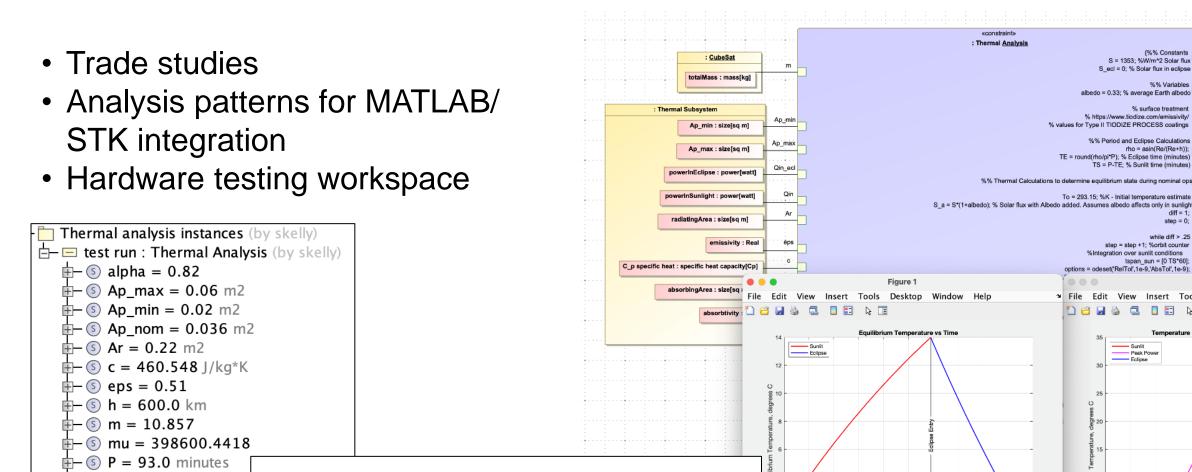
70

80 90 100

30

10 20

Analysis and Reusable Patterns



 \pm (s) Qin = 12.6

 \pm (5) Re = 6378.0

🛄 Thermal Analysis (by skelly

 \pm – (5) Qin_ecl = 17.2975

EPS Tests

«verify»

«Subsystem Requirement»

Mass

VerificationStatus = Verified verifyMethod = Test

Id = "EPS-1"

Requirement text"

risk = Hiah Text = "EPS Mass

EPS Requirements

«activity»

EPS Test 1 - Weigh Components

Ê

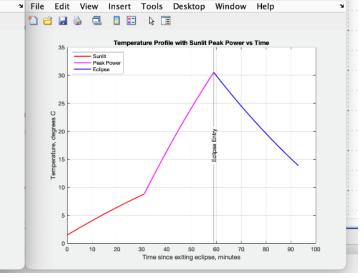
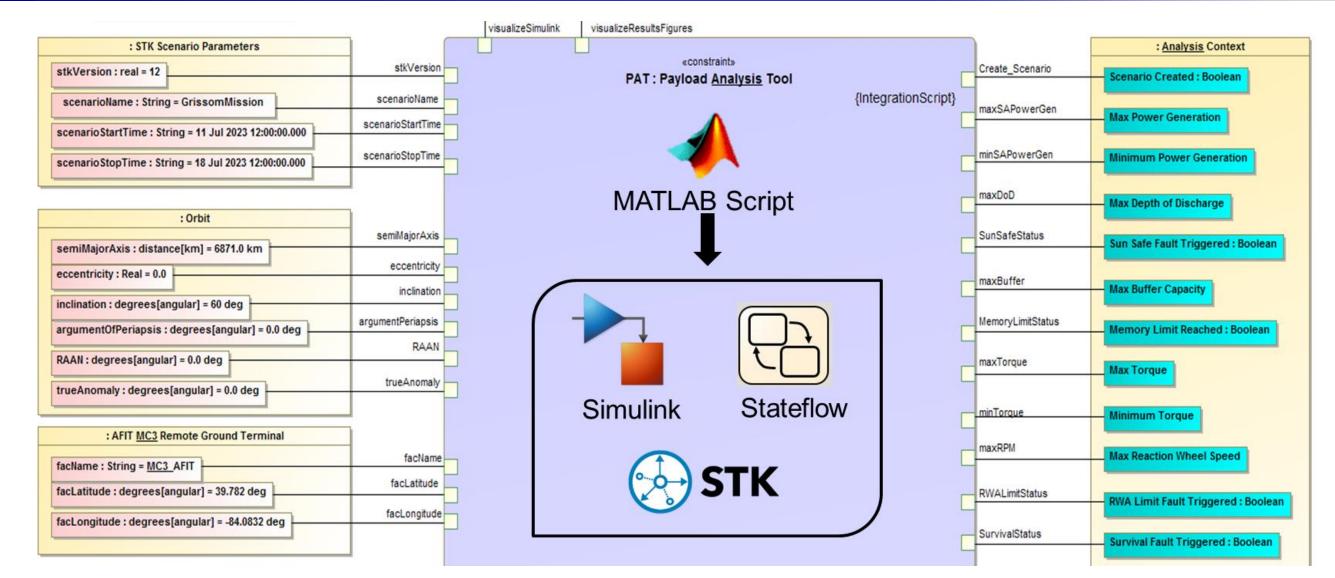
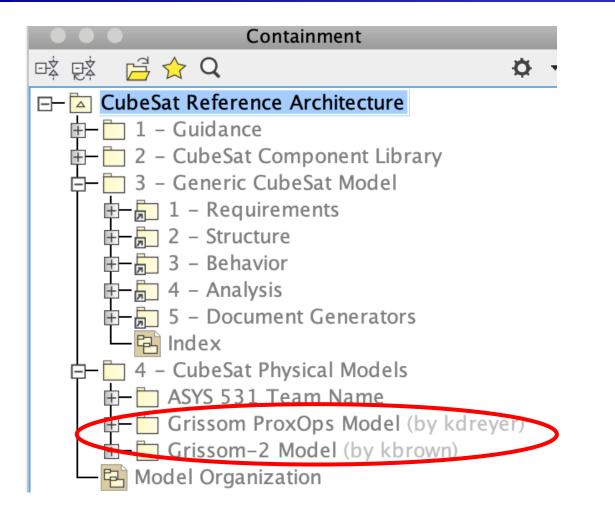



Figure 2

Payload Analysis Tool

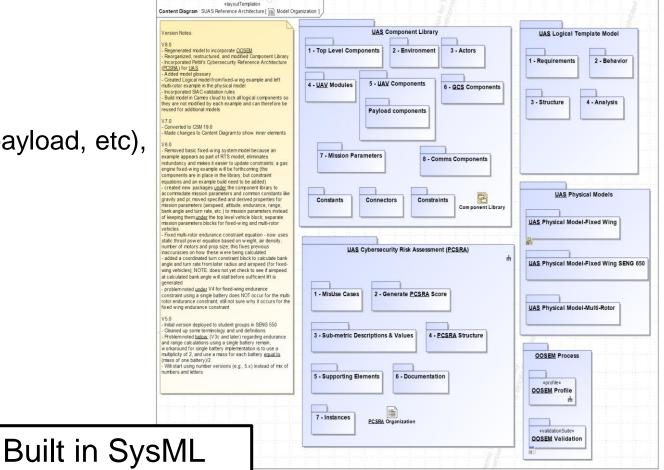
- Currently verifies compatibility and constraints associated with multiple payload, power and data storage/comm
- Research adding support for propulsion

Document Generators


Automatically generate stakeholder documentation from the model using Apache's Velocity Templating Language

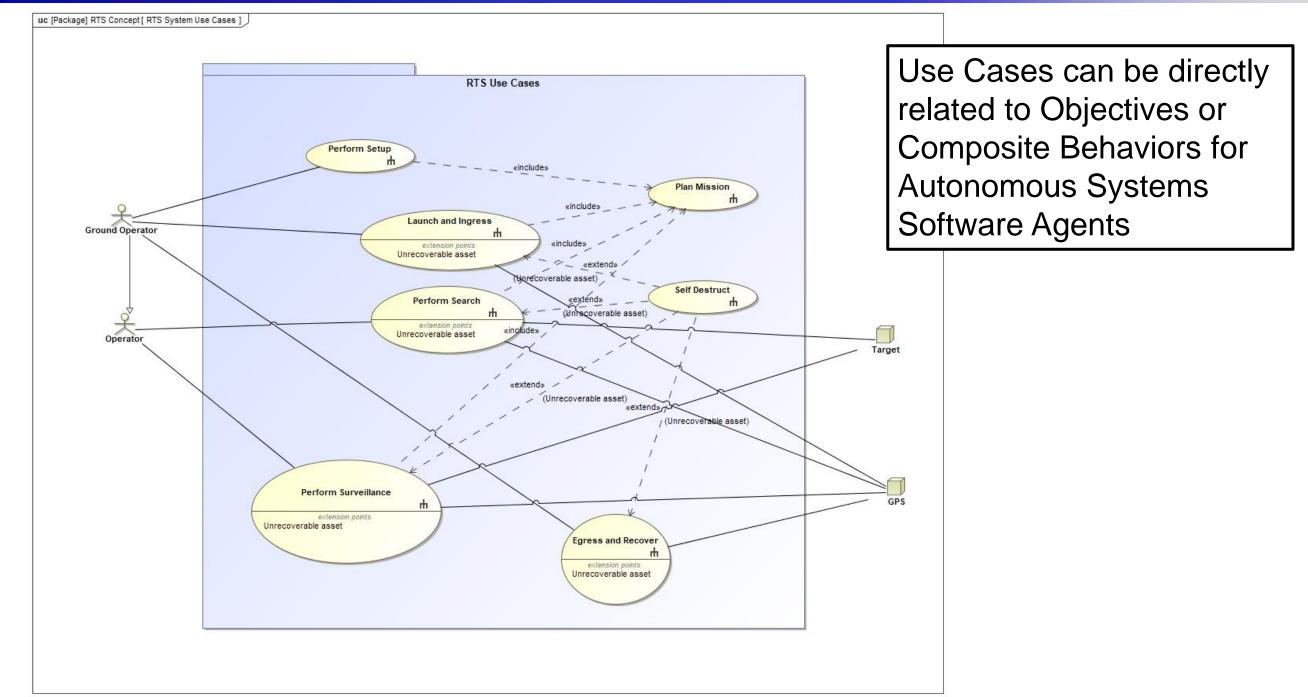
	UNCLASSIFIED	
		eric Document
		Rev 1.1
	Table of Contents	
	Introduction	9
	Mission Need	9
	Operational Context	9
	Required Capabilities	9
	Design Constraints	9
	Goals and Objectives	10
	Reference Documents	
UNCLASSIFIED	Requirements	
	Stakeholder Analysis	
Concert Query law	Stakeholder Needs and their Concerns	
Concept Overview	Stakeholder Needs	
Space Vehicle	Statistical and an AACD Advantage	
Orbit & Constellation	Mission Requirements	
Launch Vehicle	Mission Pequirements Table	
Mission Operations	Mission Requirements Derivation Matrix	23
Ground Station		25
Mission Phases Pre-Launch	system requirements	
Launch & Early Operations	System Requirements Table System Requirements to Mission Requirements Traceability Matrix	
Operational Decommissioning	Subsystem Requirements	
Fault Management		
Loss of Comm	Key Performance Parameters	
Loss of ADCS Loss of Thermal Control		
Sun Safe	Structure	
Survival	Operational Context Diagram	
Support Concept Operational Scenarios	Operational Domain	56
Separation & Deployment	Environment	57
Initialization Initial Acquisition	Orbit	58
Bus Checkout	Launch Vehicle	
Payload Checkout Transition to Operations	Ground Segment	
Bus Housekeeping	-	
Perform Mission Ground Station Pass	CubeSat	
Decommissioning	C&DH	
Operational Use Cases Use Case Descriptions	Communications	
Space Vehicle States	Payload EPS	
Space Vehicle State Machine	Propulsion	
Space Vehicle State Descriptions	Software	
	Software Structure & Mechanisms	
Space Vehicle State Descriptions	Software Structure & Mechanisms Thermal	
Space Vehicle State Descriptions	SoftwareSoftwareStructure & Mechanisms	
Space Vehicle State Descriptions	Software	
Space Vehicle State Descriptions Space Vehicle State Transitions	Software	
Space Vehicle State Descriptions Space Vehicle State Transitions Analysis. Constellation Design Trade Study Launch Vehicle Trade Study Cost Estimate. Mass Budget.	SoftwareStructure & MechanismsThermal	
Space Vehicle State Descriptions Space Vehicle State Transitions Analysis	Software & Mechanisms. Thermal Behavior	
Space Vehicle State Descriptions Space Vehicle State Transitions Analysis	Software & Mechanisms. Thermal	
Space Vehicle State Descriptions Space Vehicle State Transitions Analysis. Constellation Design Trade Study Launch Vehicle Trade Study Launch Vehicle Trade Study Cost Estimate. Mass Budget RF Link Budget Simulations.	Software Structure & Mechanisms. Thermal Behavior UNCLASSIFIED 102 102 102 102 102 102 102	
Space Vehicle State Descriptions Space Vehicle State Transitions Analysis. Constellation Design Trade Study Launch Vehicle Trade Study Cost Estimate. Mass Budget RF Link Budget	Software Structure & Mechanisms. Thermal Behavior UNCLASSIFIED 102 102 102 102 102 102 102	
Space Vehicle State Descriptions Space Vehicle State Transitions Analysis. Constellation Design Trade Study Launch Vehicle Trade Study Launch Vehicle Trade Study Cost Estimate. Mass Budget RF Link Budget Simulations.	Software Structure & Mechanisms. Thermal Behavior UNCLASSIFIED 102 102 102 102 102 102 102	
Space Vehicle State Descriptions Space Vehicle State Transitions Analysis	Software & Mechanisms. Thermal	

Instances/ Applications of CubeSat RA



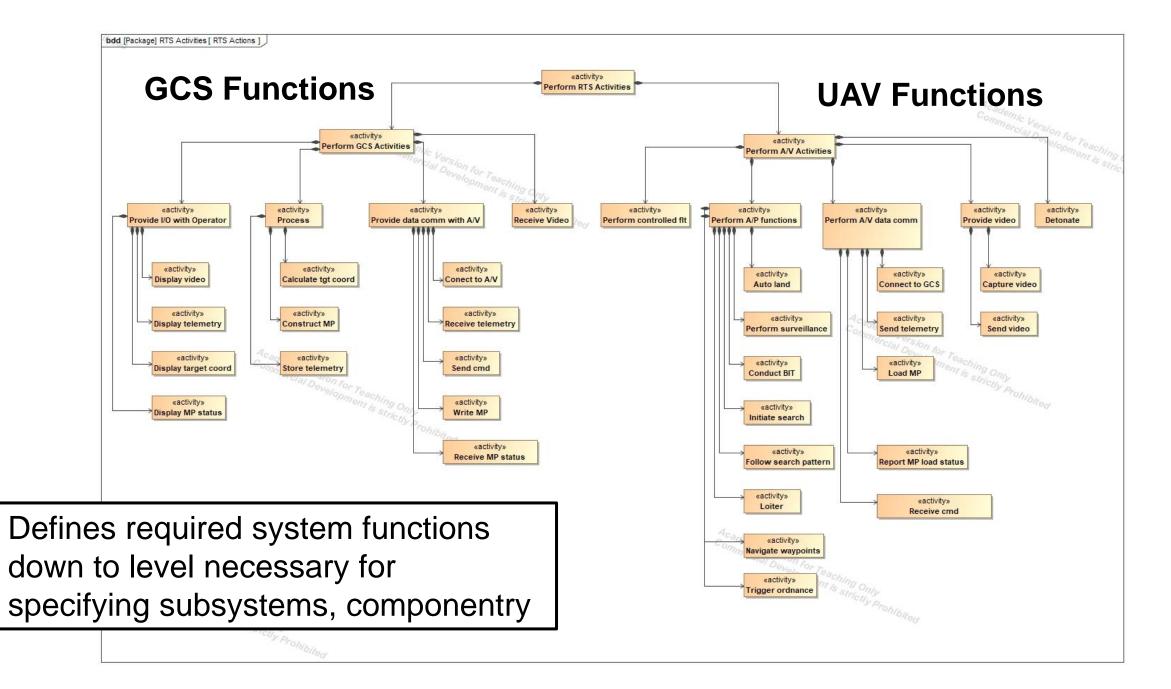
	r	
2 - <u>CubeSat</u> Component Library		TUTE OF TEDHNOLODY
e <u>CubeSat</u> Component Library	Diagram name:	Model Organization
B.	Last modified:	1/18/21 7:23 PM
	Last modified by:	skelly
-	This model is	UNCLASSIFIED.
	DISTRIBUTION A. Ap distributi	pproved for public release: on unlimited.
	ce <u>CubeSat</u> Component Library 4 - <u>CubeSat</u> Physical Ma Grissom ProxOps Model G	Ce CubeSat Component Library Diagram name: Last modified: Last modified by: This model is DISTRIBUTION A. Ap distribution 4 - CubeSat Physical Models Grissom ProxOps Model Grissom-2 Model

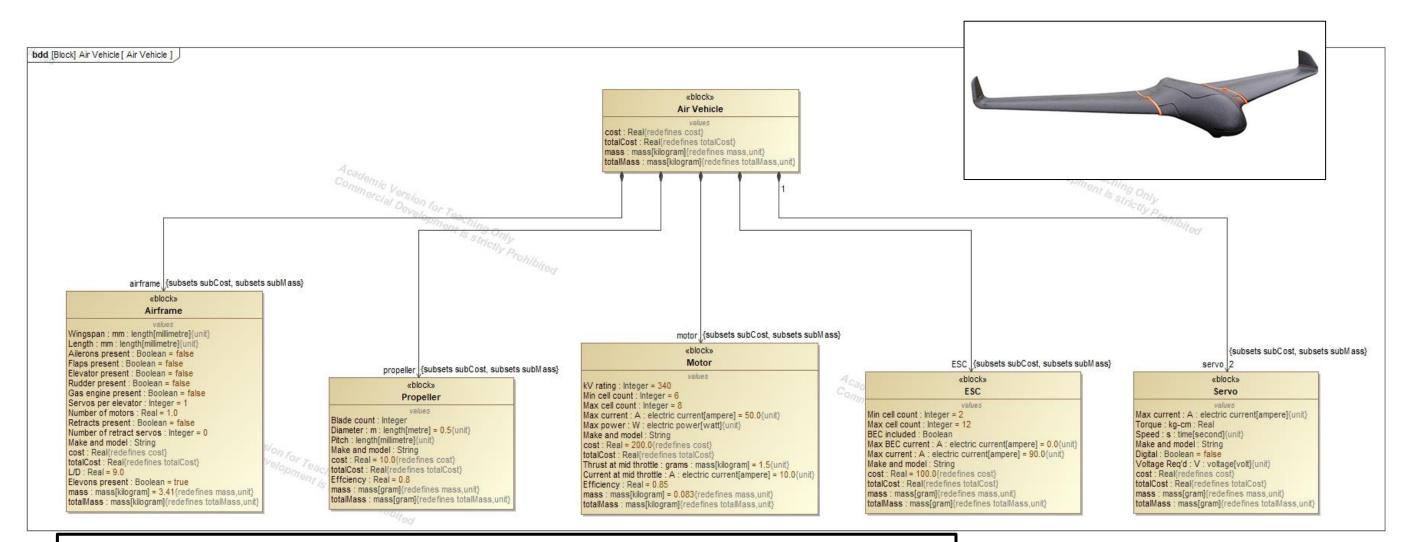
- "Practice what we preach"
 - Start class with Reference Architecture
 - Iterate/ update model over 3 courses track (Design, Build, Test)
 - Learn Agile/ Rapid prototyping
 - Use model to:
 - analyze requirements,
 - perform sizing analysis (weight, battery, sensor/payload, etc),
 - document PDR (functional),
 - conduct CDR (function, physical, I/F),
 - trace test planning
 - Update Tech Perf Metrics/ Risk
 - Support TRB/SRB,
 - System Verification Review (SVR)
 - Research in DE/MBSE



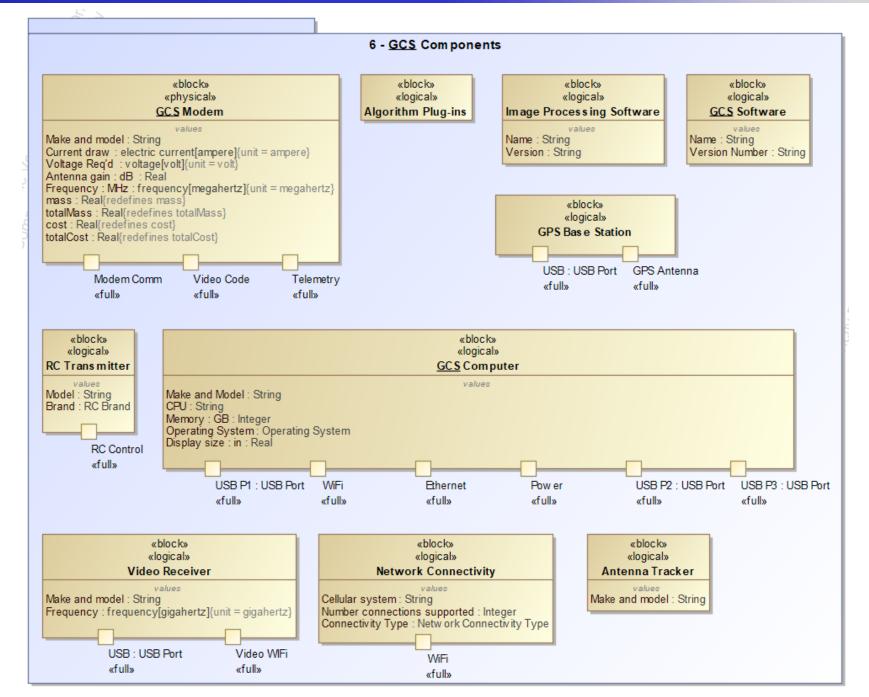
- Students typically follow an Object Oriented SE Methodology
 - Given draft CONOPS and draft stakeholder requirements
 - CONOPS scenarios are refined with Use Cases; systems requirements defined
 - Use Cases support functional decomposition, with traceability to requirements
 - Functional allocation used to define a physical architecture (to include external systems and operators)
 - Test cases established for verification and validation
- Architecture models are "deliverables" at PDR, CDR and SVR (post flight)

Remote Targeting System (RTS)



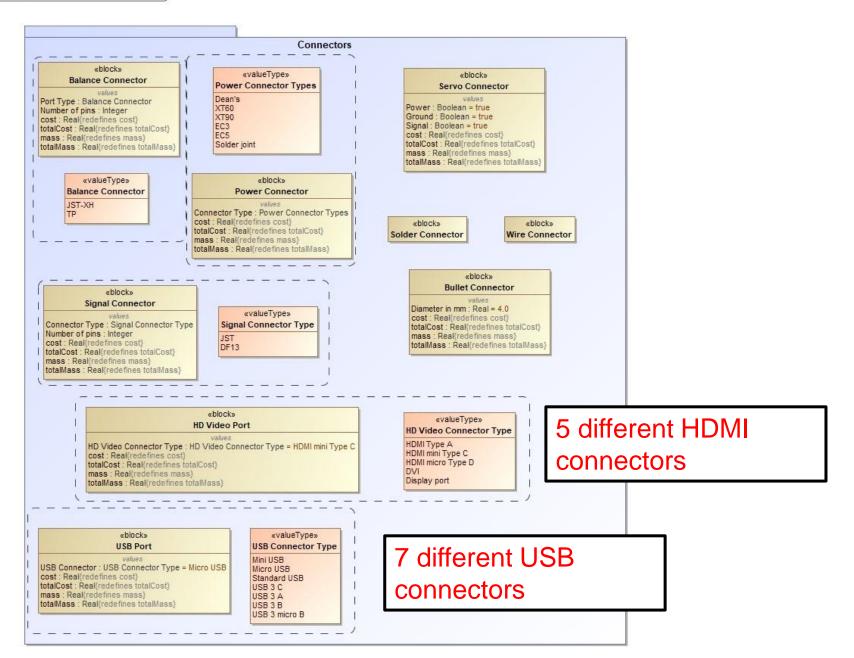


RTS: Logical Vehicle Design


bdd reflects design choices to combine with stock airframe (not including autopilot, comm, and payload, which are defined in parallel branches

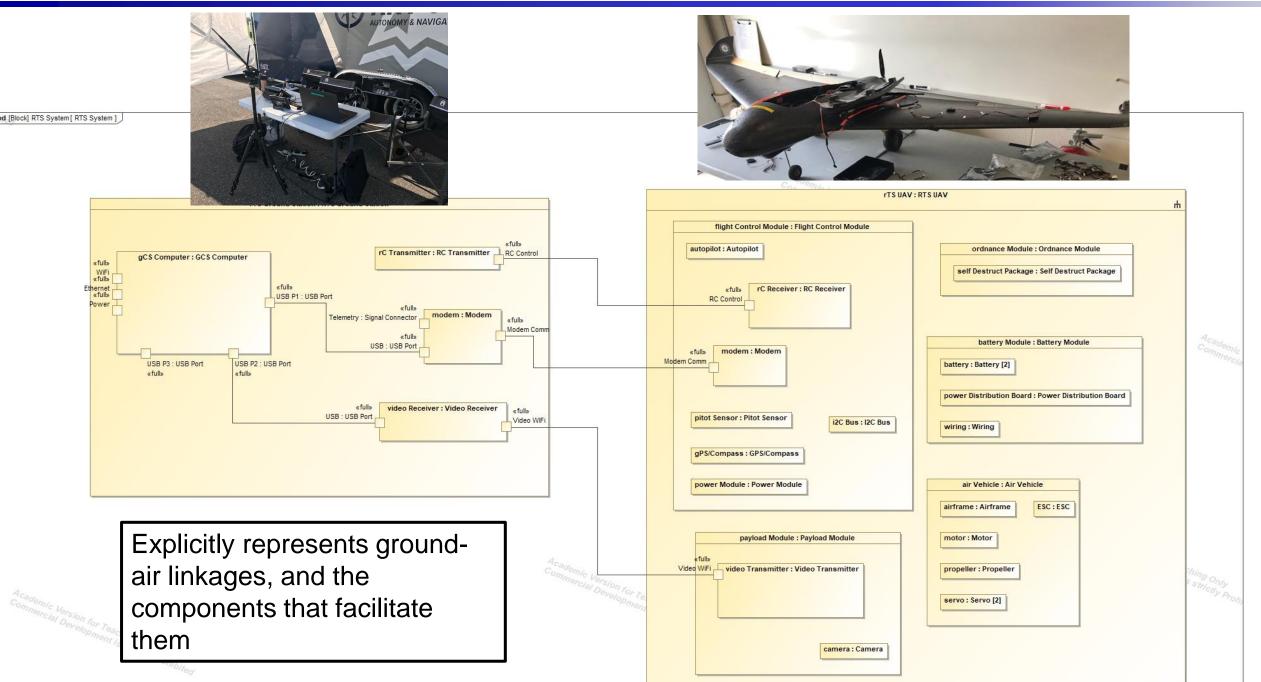
Common Components

Pre-built component blocks with standard interfaces facilitate rapid design through re-use

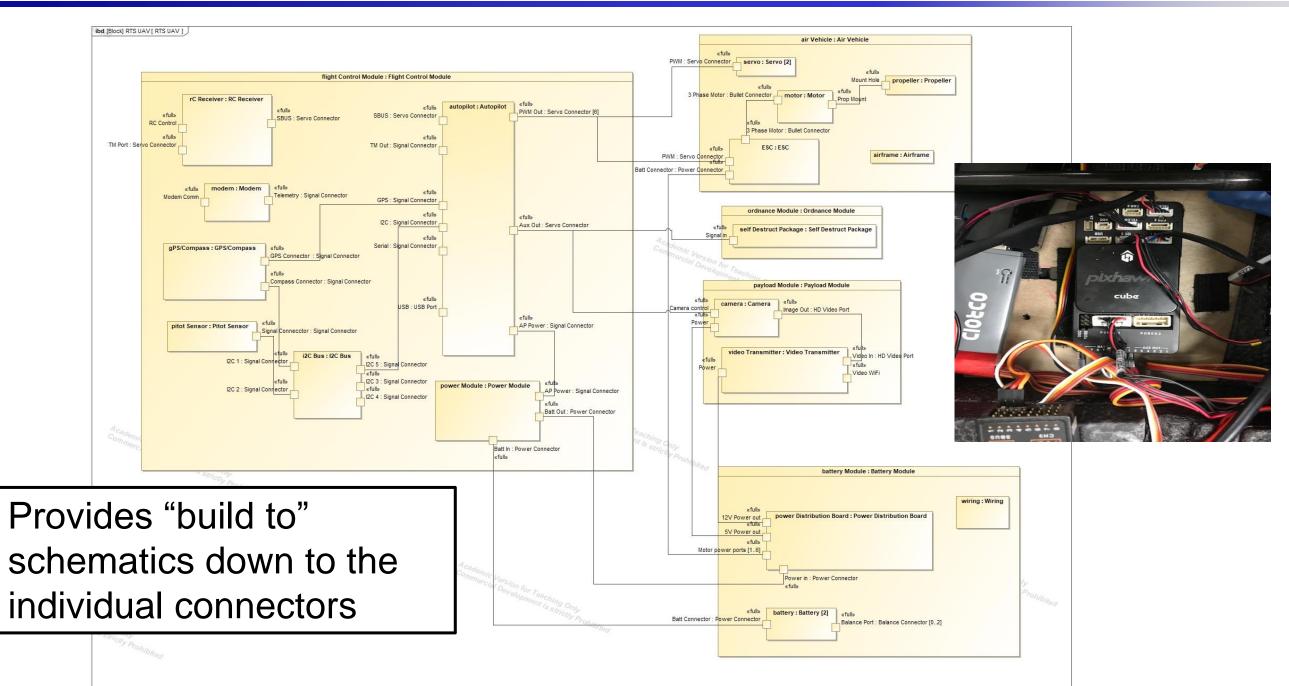


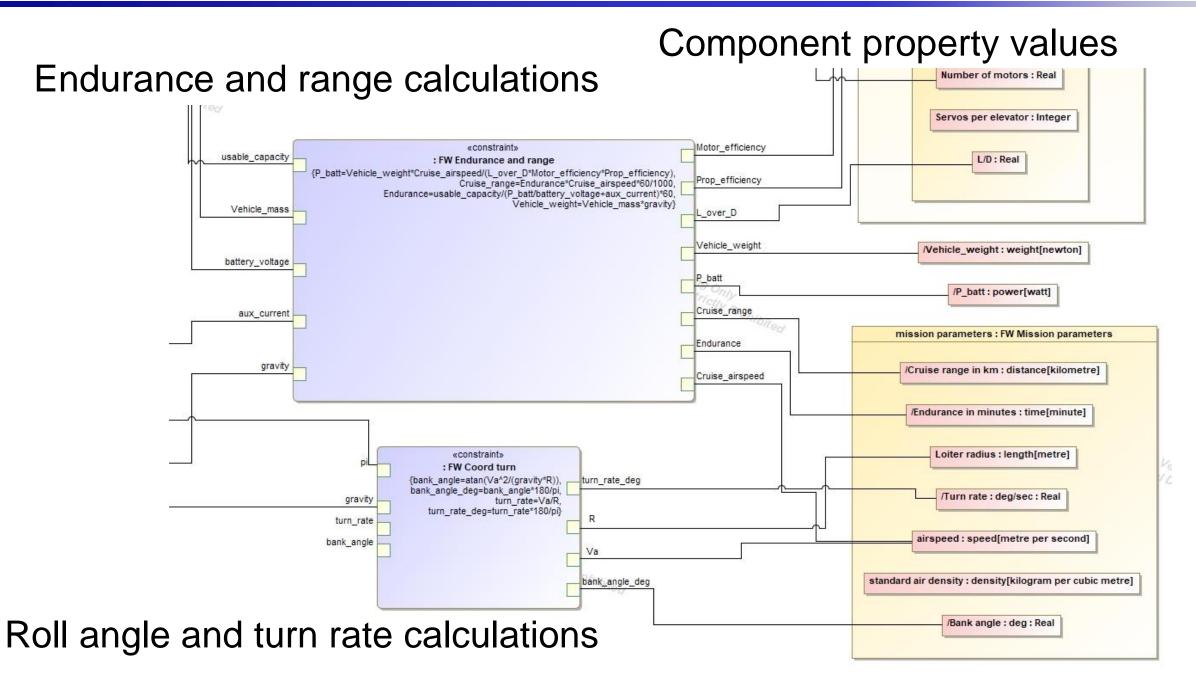
Common Connectors

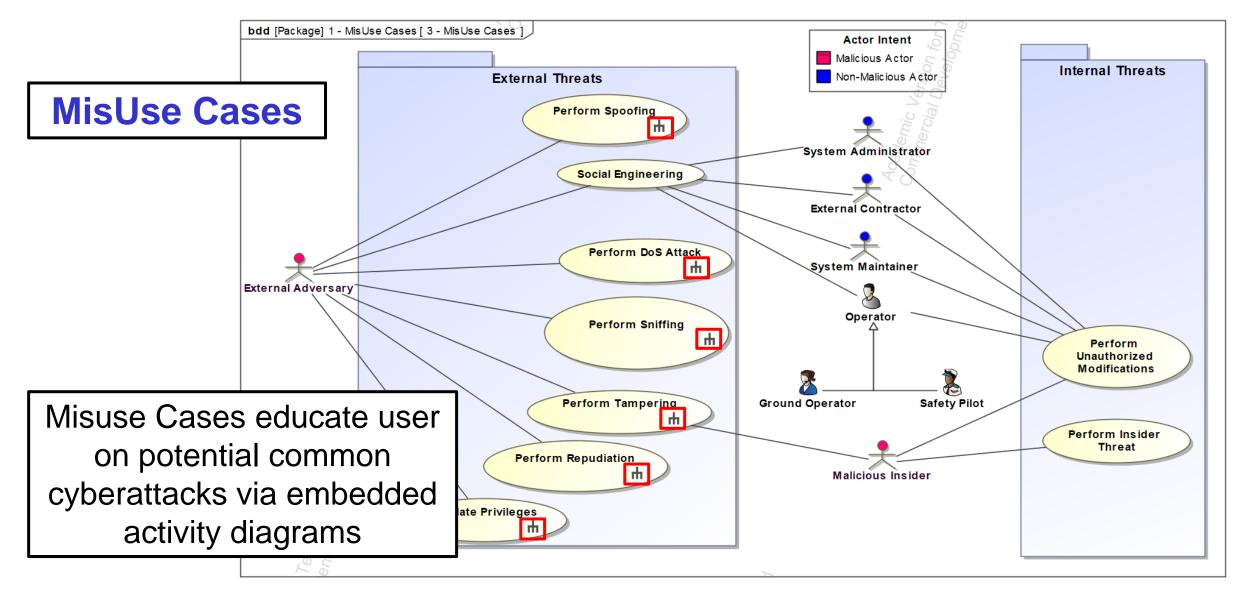
pkg [Package] Component Library [Component Library]

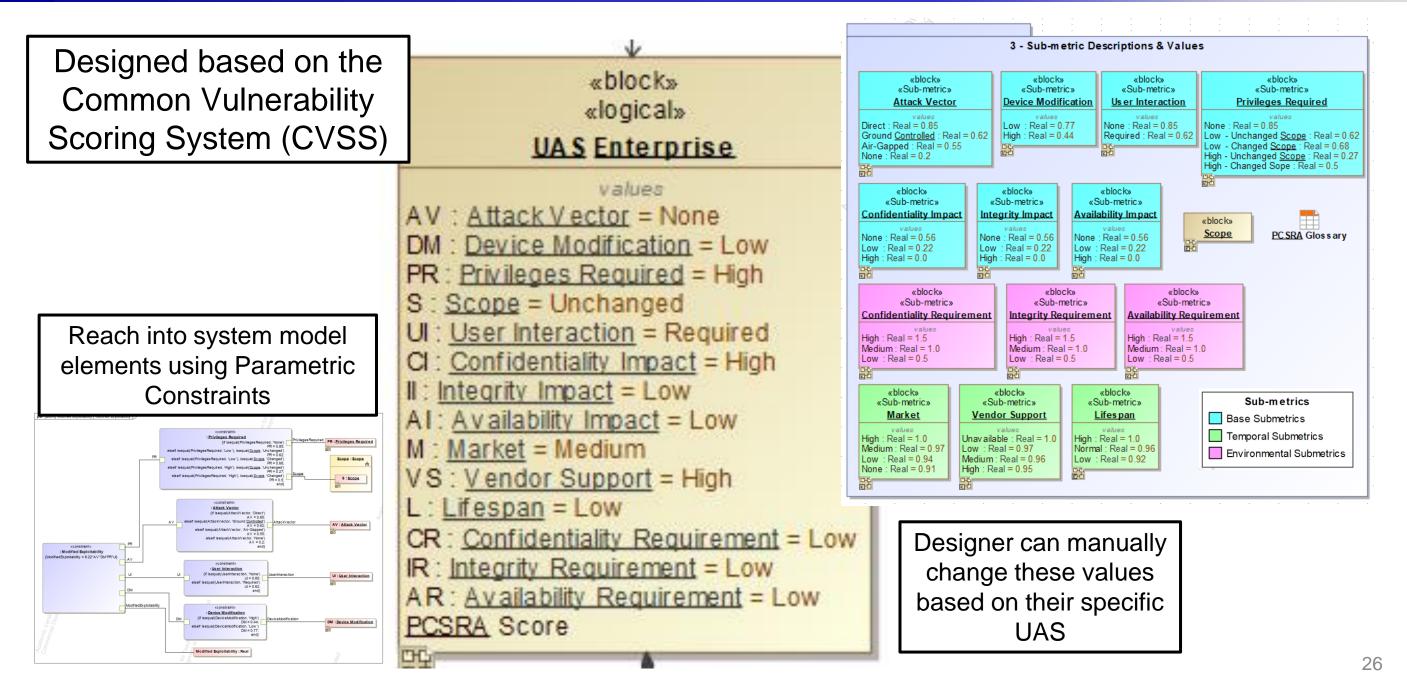

Pre-typed ports and connectors facilitate integration of COTS components

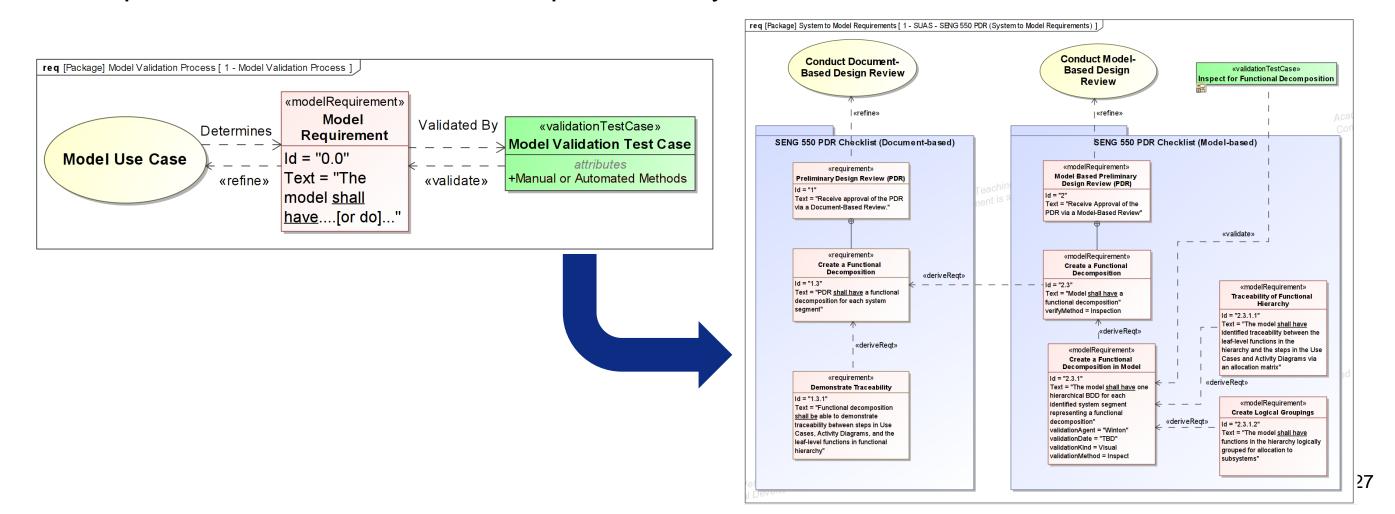
System Level connections (ibd)




Vehicle schematics (ibd)

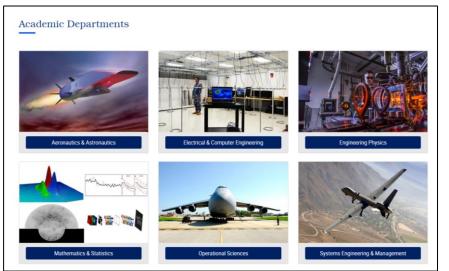



Research efforts in Digital Engineering


Cybersecurity Risk Assessment

- Research efforts in Digital Engineering
- Validation of Digital System Models, March 2023
 Capt James Winton. Research sponsored by: F-16, AFLCMC/WAM

Air Force Graduate School of Engineering & Management


- <u>https://www.afit.edu/EN/</u>
- Free to Air Force military and civilians. Open to defense contractors

Opportunities for Certificate or Masters programs

- Systems Engineering Certificate (4 courses)
- Master of Science in Systems Engineering Thesis. available entirely via Online, 9 courses + thesis
- Master of Engineering in Applied SE

Non-thesis. available entirely via Online, 11 courses + capstone

Where (to apply): <u>https://www.afit.edu/Admissions/</u>
What (you need): BS (Engineering, STEM), GPA(≥ 3.0), GRE (V ≥ 153, Q ≥ 148)
... Apply regardless of your academics.
When (to apply): Anytime. Eligibility good for 3 years. Apply now (why not?!)

Air Force Institute of Technology

U.S. AIR FORCE

Adoption of Model-Based Systems Engineering in Traditional DoD Systems

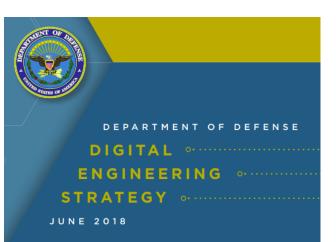
Capt Patrick Assef, AFNWC/NXEE Lt Col Jeremy Geiger, AFIT/ENV

12 May 2023

- Background & Research Questions
- Research Methods
- Results & Conclusions
- Ongoing Efforts

"...the next big paradigm shift for military tech dominance. Rather than just <u>building better systems</u>, it <u>builds systems</u> <u>better</u>..."

-Dr. William Roper, There is No Spoon


USAF announces launch of new Digital Transformation Office

10 Jun 2021 (Last Updated June 10th, 2021 17:06)

The new DTO office will support collaboration and sharing of best practices and lessons learned.

DAYTON BUSINESS JOURNAL

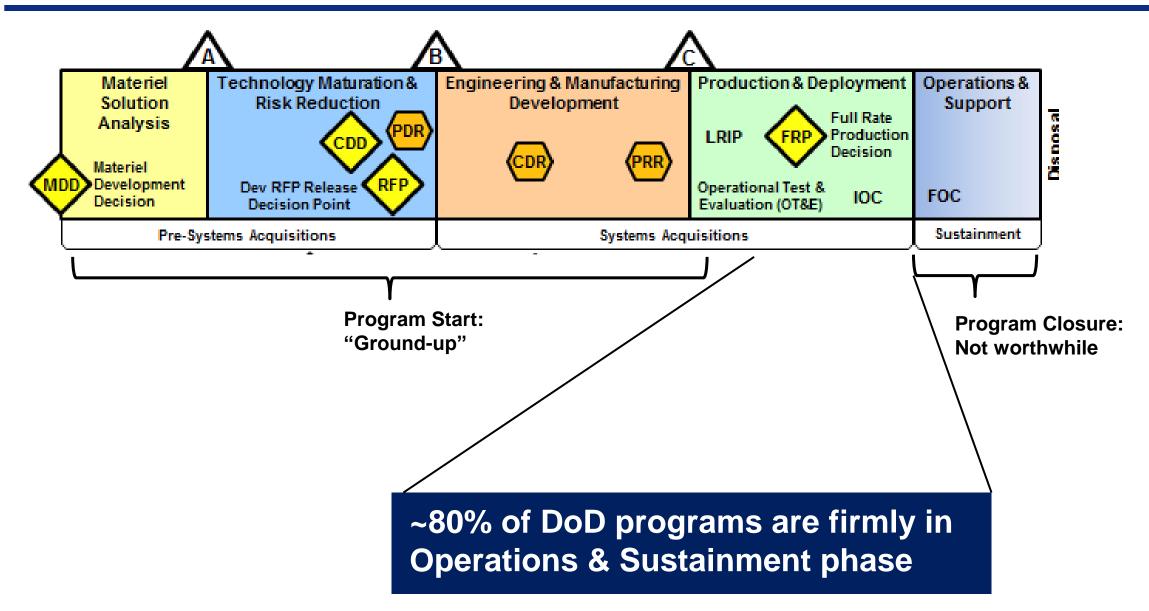
New Air Force center to support military's digital transformation, aided by Dayton companies

Initial Guidance failed to provide:

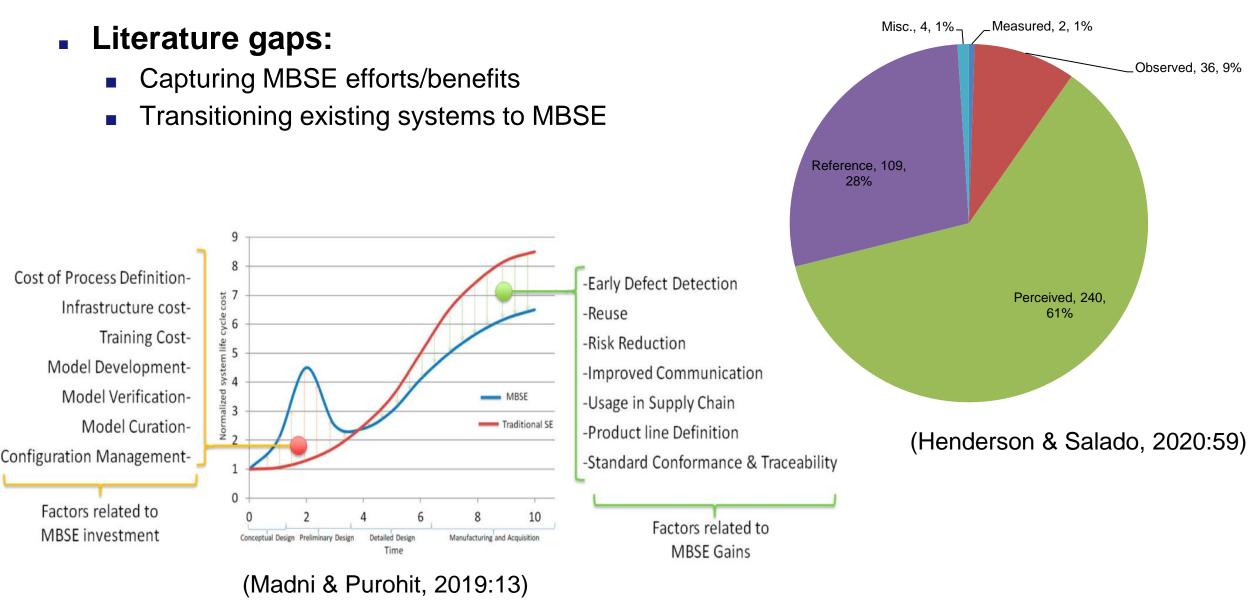
- Time/Cost/Schedule expectations
- Single, Department-wide software tool
- Licenses
- Training
- Templates
- Classification guidelines

Program Office's Need to determine:

- State of current systems engineering tools (i.e. document based)
- Desired end state (i.e. Model Based Systems Engineering)
- What Software is Needed (licenses, cost, AFNet approval, long-term support)
- Staff (user) training requirements
- Cost & Schedule impacts
- Unique program gains/pitfalls



How are Programs Effected?



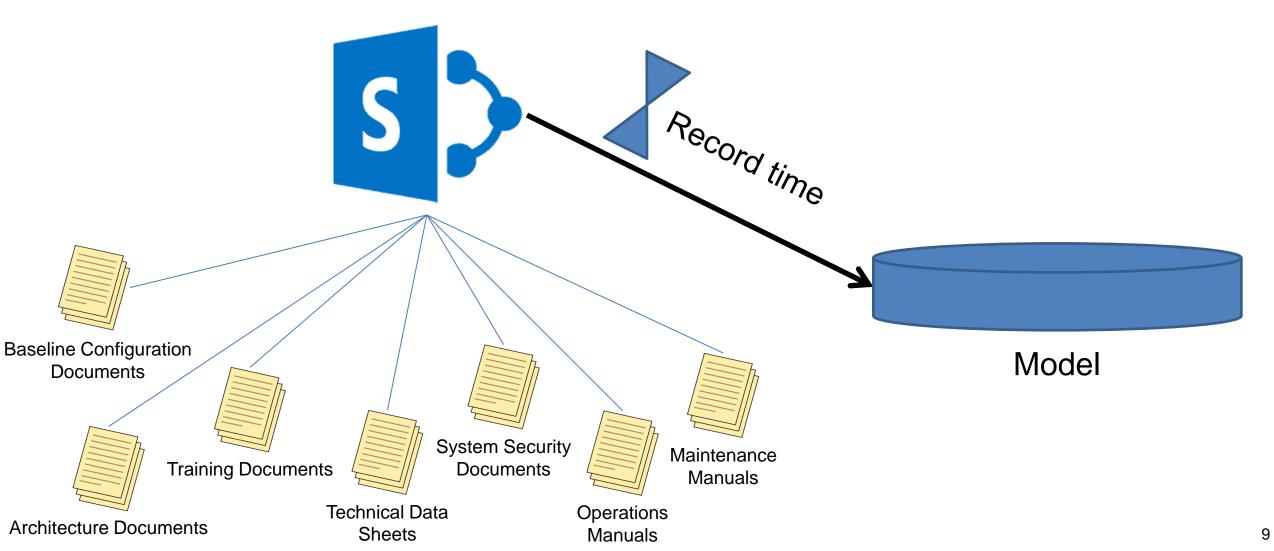
What Does Everyone Else Think?

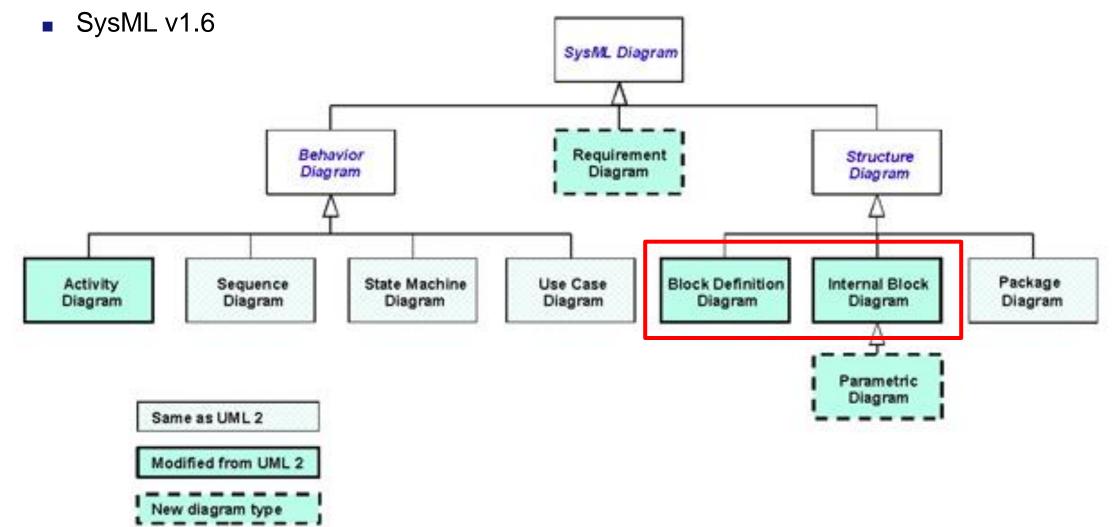
- **1.** What effort is required to transition an existing SoS to MBSE?
- 2. How can the effort be measured?
- 3. What types of costs are associated with MBSE adoption?
- 4. What resources are available for program offices wishing to transition to MBSE?

- Document-based system or System of Systems (SoS)
- Repository of available SE documents
- Record time to transition documents to model
- MBSE costs (Madni & Purohit, 2019:13)
 - Process definition
 - Infrastructure
 - Training
 - Model-related

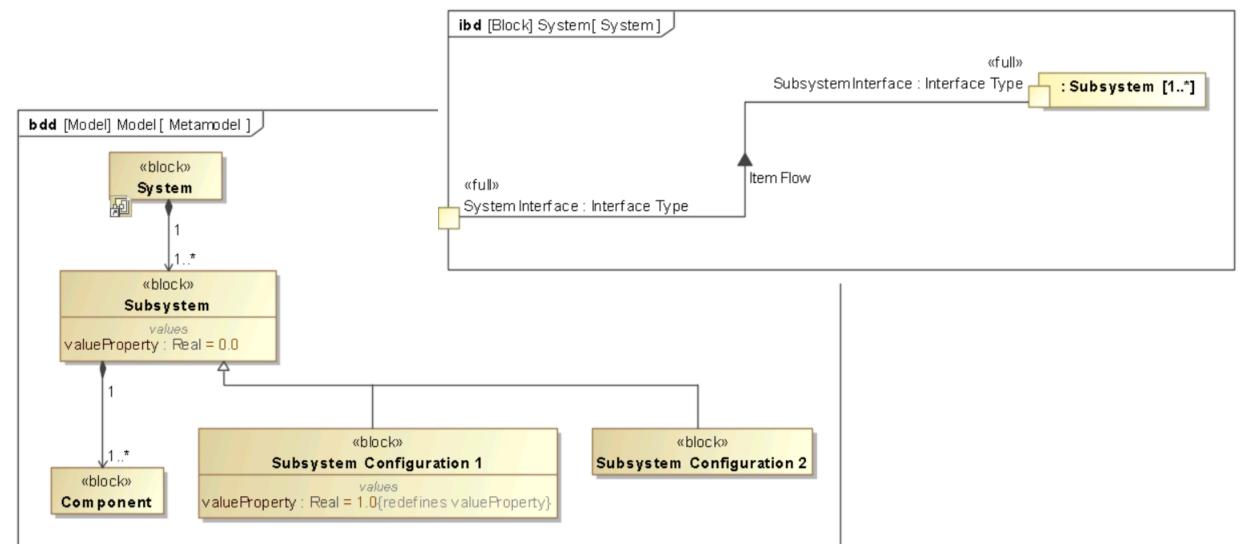
Gather MBSE resource information

INCOSE, Object Management Group, DTO

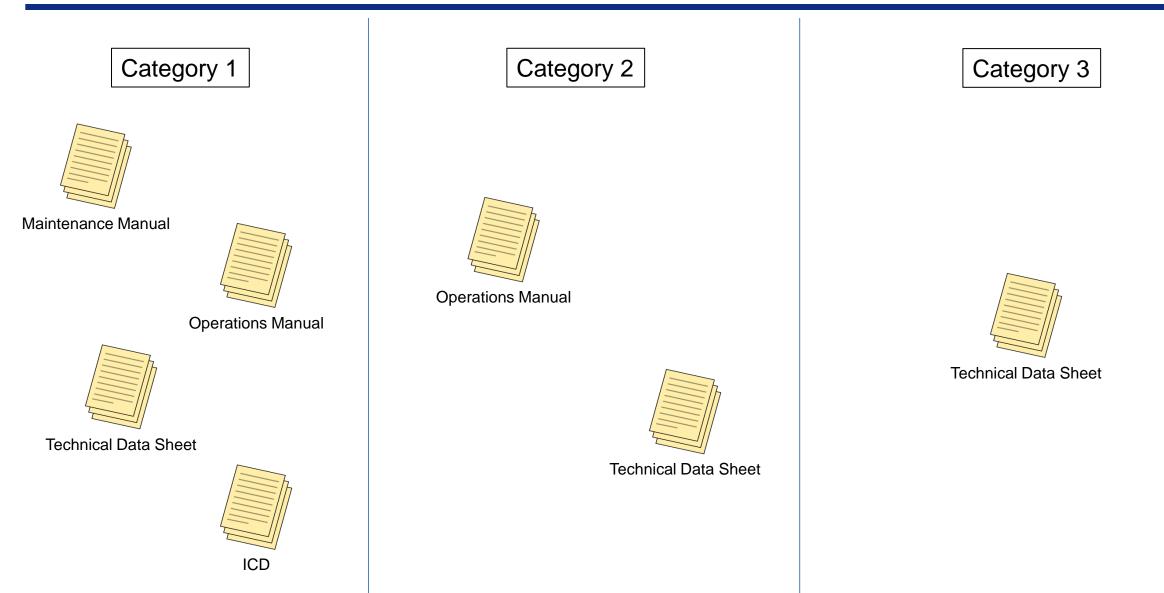


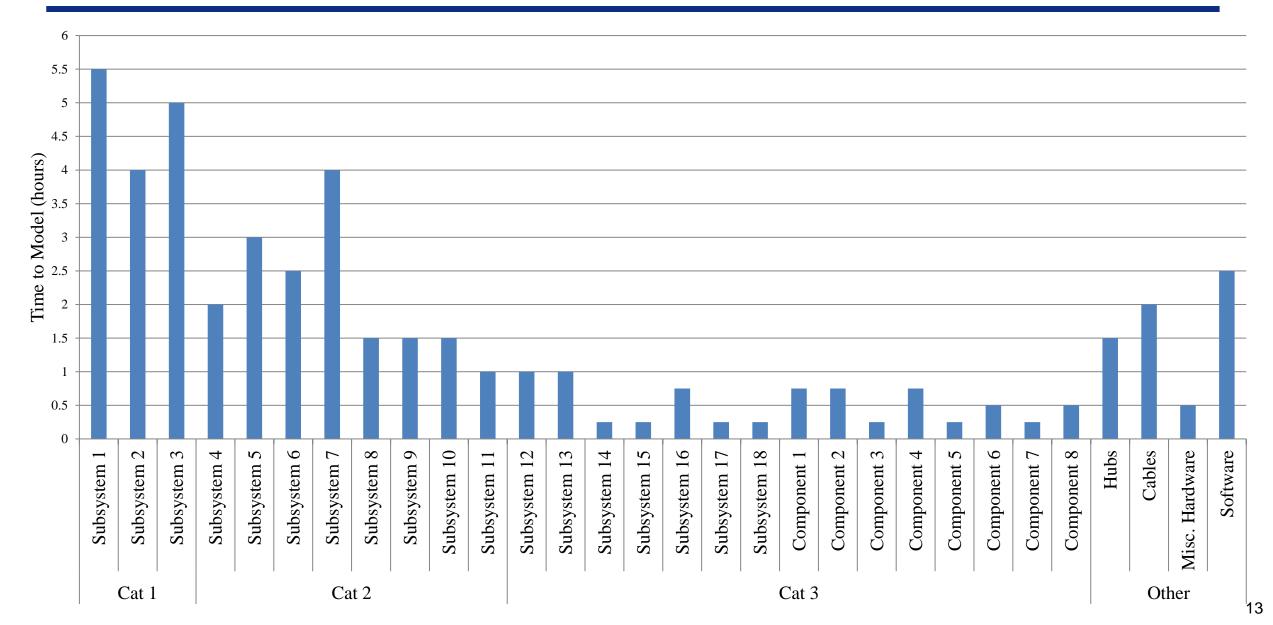


System of Interest: ACAT III (<\$200M RDT&E and <\$920 Procurement)</p>



Cameo Systems Model V19.0 SP4





Portion	Time Spent Transitioning to MBSE (hrs)	Time Spent Transitioning to MBSE (%)
Subsystems/ Components	45.75	49.6
SoS Structure	38.5	41.7
Model	8	8.7
Total	92.25	100

Model Portion	Average Time to Model (hours)
Category 1 Subsystem/Component	4.833
Category 2 Subsystem/Component	2.125
Category 3 Subsystem/Component	0.5167
Cabling	0.069/cable
Power/Data Hubs	0.375/hub
Software	0.05/piece of software
Miscellaneous Hardware	0.125/component
SoS	1.283 per subsystem or component
General Modeling	0.267 per subsystem or component

- 1. What effort is required to transition an existing SoS to MBSE?
- 2. How can the effort be measured?
- 3. What types of costs are associated with MBSE adoption?
- 4. What resources are available for program offices wishing to transition to MBSE?

Software	Name of the software.
Company	Company which develops the software.
Country of Origin	Country where the company is located.
Number of Users	Numbers of users of the software.
Version	Different versions of the software available, ordered from least amount of features to most.
Price	Price of the software, rated on a scale of \$ (low) to \$\$\$ (high).
Purchase Options	Perpetual, rental, and/or subscription.
License Type(s)	Standard, floating, or both.
Modeling/Simulation	Modeling and/or simulation.
Cloud Service	Does the software offer a cloud service for model storage and collaborative work?

Results – Resources

Software	Developer	Country of Origin	No. of Users	Variation	Drice (USD)	Liconse Ture	Purchase	Modeling/ Simulation	Cloud Service?
		, ,			Price (USD)	License Type		f Madalina	
Astah	Change Vision, Inc.	Japan	640,000	astah SysML	\$	Both	Perpetual or	Modeling	N
		-		astah System Safety	\$	Both	subscription	Modeling	Y
Cameo Systems Modeler	Dassault Systemes	France		Architect Edition	\$\$-\$\$\$	Both	Perpetual or		Y
	(aquired from			Enterprise Edition	\$\$\$	Both	subscription	Both	Y
Capella	Multiple	France	50+ organizational users	N/A	Free	N/A	N/A	Modeling	?
Engineering Systems Design Rhapsody	IBM	USA		Architect for Systems Engineers	?	Both	Perpetual or	Modeling	Y
				Designer for Systems Engineers	?	Both	subscription	Both	Y
Enterprise Architect	Sparx Systems	Australia	850,000+	Professional	\$	Both	Perpetual or	Modeling	Y
			licenses sold	Corporate	\$	Both	subscription	Modeling	Y
				Unified	\$	Both	1	Both	Y
				Ultimate	\$\$	Both	1	Both	Y
GENESYS	Vitech	USA		N/A	\$\$\$	Both	Perp. or sub.	Both	Y
Innoslate MBSE	SPEC Innovations	USA	2000+ companies	N/A	?	Both	?	Both	Y
Modelio	Modeliosoft	France		N/A	Free	N/A	N/A	Modeling	N
Papyrus	CEA LIST, Eclipse Foundation	France		N/A	Free	N/A	N/A	Both	N
SCADE Architect	Ansys	USA		N/A	?	?	?	?	?
Software Ideas Modeler	Software Ideas	Slovakia		Premium	\$	Both	Perpetual or	Modeling	Y
				Professional	\$	Both	subscription	Modeling	Y
				Ultimate	\$	Both		Modeling	Y
Visual Paradigm	Visual Paradigm	Hong Kong	320,000+	Modeler	\$	Both	Perpetual,	Modeling	Y
			people	Standard	\$	Both	subscription,	Modeling	Y
				Professional	\$	Both	or rental	Modeling	Y
				Enterprise	\$\$-\$\$\$	Both		Modeling	Y
Windchill Modeler	PTC	USA		N/A	?	?	?	?	?

8

Organization	Organization which offers the course.
Course	Title of the course.
Price	Price of the course, if there is one.
Language/Tool	What MBSE language(s) and tool(s) the course uses.
Level	The MBSE skill level of the course: beginner, intermediate, or advanced.
Length	Length of the course.
Course Delivery	How to course is taken: in-person, synchronous remote, or asynchronous
	remote.

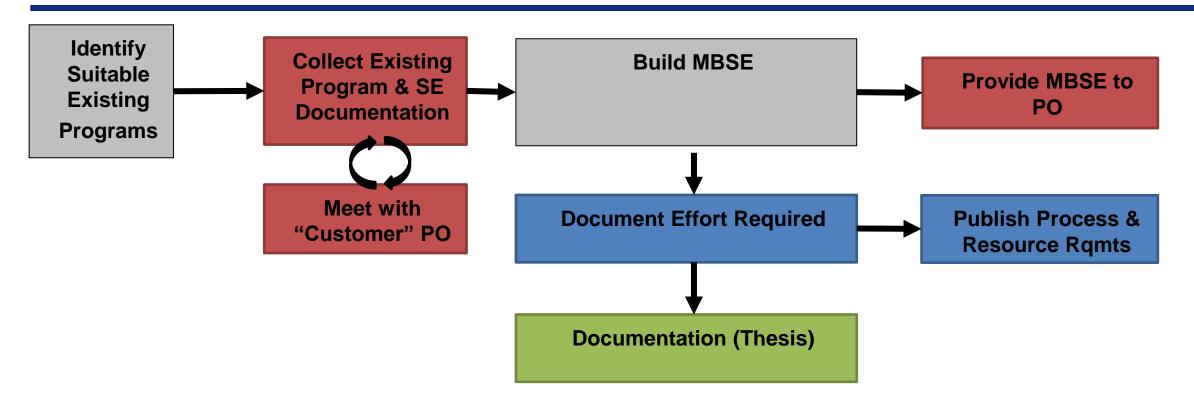
Results – Resources

Organization	Course	Price	Language/Tool	Level	Length	Delivery
AFIT	SENG 520 Foundations of Systems Engineering	?	SysML/Cameo	Beginner	10 weeks	In-person or Virtual
	SENG 660 Advanced Principles of Engineering Design	?	SysML/Cameo	Advanced	10 weeks	In-person or Virtual
	Tailored Program Specific Modeling and Cameo Course	?	SysML/Cameo	Varies	1-4 weeks	In-person or Virtual
Cal Tech	Model-Based Systems Engineering (MBSE) Certificate Program	\$2,850	SysML	Beginner	5 days	Virtual - Sync
Dassault Systemes	SysML Intensive with MBSE Using Cameo Systems Modeler	Paid	SysML/Cameo	Beginner	5 days	In-person or Virtual
	Teamwork Cloud Project Strategies and Best Practices	Paid	SysML/Cameo	Intermediate	2 days	In-person or Virtual
	Simulation Toolkit with Cameo Systems Modeler	Paid	SysML/Cameo	Advanced	5 days	In-person or Virtual
DAU	CENG 001 Coursera-MBSE (Model-Based Systems Engineering)	Free		Intermediate	11 hours	Virtual - Async
IBM	IBM Engineering Systems Design Rhapsody plus SysML for MBSE	Paid	SysML/Rhapsody	Intermediate	24 hours	In-person or Virtual
	Quick Starts: IBM Engineering Systems Design Rhapsody for MBSE	Free	Rhapsody	Beginner	2 Hours	Virtual - Async
	Accelerated IBM Engineering Systems Design Rhapsody for Existing UML/SysML Users	Paid	UML or SysML/Rhapsody	Advanced	24 hours	In-person or Virtual
MIT xPro	Architecture and Systems Engineering: Models and Methods to Manage Complex Systems	\$3,249	SysML	Beginner	17 weeks	Virtual - Sync
NASA	Foundations of MBSE (APPEL-vMBSE1)	Free	General MBSE	Beginner	1 day	Virtual - Sync
	Applied MBSE (APPEL-vMBSE2)	Free	General MBSE	Intermediate	2 days	Virtual - Sync
	Model Based Systems Engineering Design and Analysis (APPEL-vMBSE3)	Free	General MBSE	Advanced	3 days	Virtual - Sync
NAVAIRU	CORE-410-102 Basic SysML (101/201)	Paid	SysML	Beginner		
	CORE-410-103 Intro to SysML	Free	SysML	Beginner	4 hours	Virtual - Async
	CORE-411-115 SE Bootcamp	Free	General MBSE	Beginner	5 days	In-person
	CORE-411-116 SET for PMs and IPTLS	Free	General MBSE	Beginner	3 hours	Virtual - Async
	CORE-41B-2001 A Look Ahead at SysML v2 by Sanford Friedenthal	?	SysML	Intermediate		
	CORE-41B-200121 Language, Profile, & Framework	?	SysML	Intermediate		
	CORE-41B-200211 Cameo Collaborator-Tutorial	?	SysML/Cameo	Intermediate		
	CORE-44W-190314	?	SysML	Intermediate		
	CORE-450-195 Applying Open Architecture Through MBSE for Applications at NAVAIR	?	UML & SysML	Intermediate		
	CORE-4KB-181219 Application of MBSE in the Development of UPneXt	?	General MBSE	Beginner		
	CORE-4M2-107 SysML Intensive with MBSE using CSM	?	SysML/Cameo	Intermediate	5 days	
Naval Postgraduate School	SE4930 Model-Based Engineering Course	\$2,500		Intermediate	10 weeks	Virtual - Sync
	MBSE Certificate Program	\$10,000		Intermediate	1 year	Virtual - Sync
PivotPoint Technology	Essential MBSE + SysML Applied	Paid	SysML/Various	Beginner	3-5 days	In-person or Virtual
	Intermediate MBSE + SysML Applied	Paid	SysML/Various	Intermediate	4-5 days	In-person or Virtual
	Advanced MBSE + SysML Applied	Paid	SysML/Various	Advanced	3-5 days	In-person or Virtual
Sparx Services	MBSE using Sparx EA	Paid	SysML/Enterprise Architect	Intermediate	5 days	In-person or Virtual
SPEC Innovations	IST 101 Introduction to Innoslate	Paid	LML/Innoslate	Beginner		In-person or Virtual
	IST 201 Innoslate for MBSE	Paid	LML/Innoslate	Beginner	2 days	In-person or Virtual
	IST 501 Intermediate Innoslate Application	Paid	LML/Innoslate	Intermediate	3 days	In-person or Virtual
	IST 705 Advanced Innoslate Workshop	Paid	LML/Innoslate	Advanced		In-person or Virtual
Teaching Science and Technology, Inc.	MBSE Course with Workshop	\$980	General MBSE/Innoslate	Beginner	4-5 days	In-person or Virtual
Thales	Arcadia & Capella MBSE training	Paid	Capella	Beginner	3 days	
Visual Paradigm	Visual Paradigm Essential	Free	Visual Paradigm	Beginner	5+ hours	Virtual - Async
Vitech	MBSE Tutorial	Paid	General MBSE	Beginner	2 hours-2 days	
	Introduction to MBSE with GENESYS	\$1,995	GENESYS	Intermediate	5 days	Virtual - Sync

1. What effort is required to transition an existing SoS to MBSE?

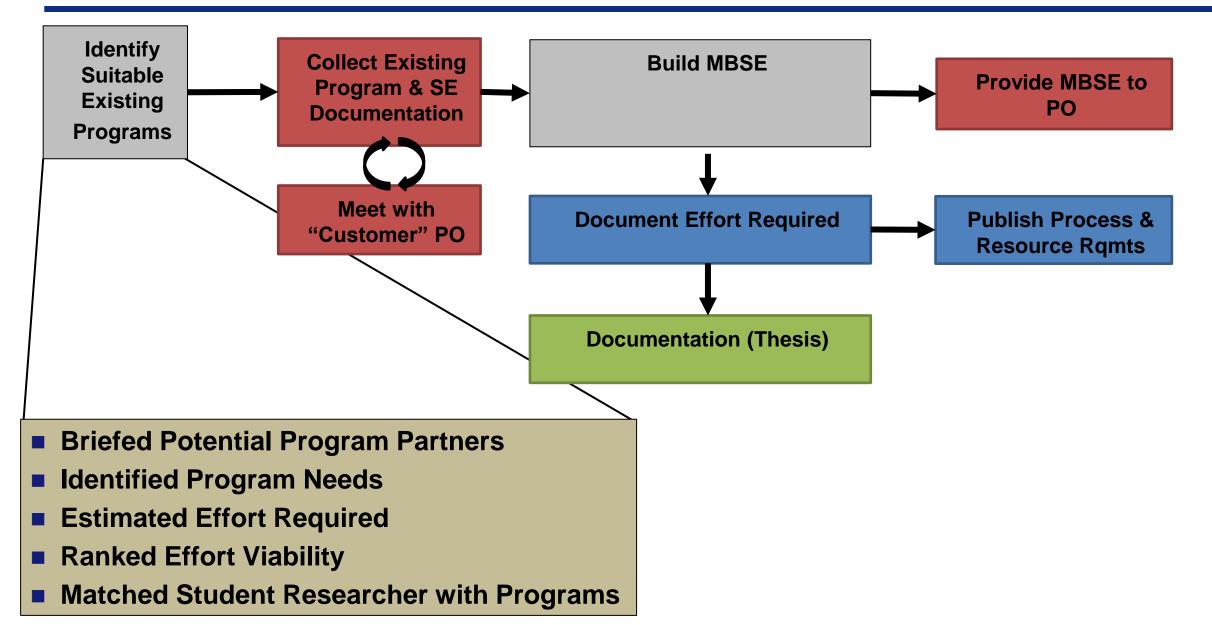
- 92.25 hours: 45.75 on subsystems/components, 38.5 on structure, 8 on general modeling
- 2. How can the effort be measured?
 - Subsystem/component categories, time to model
- 3. What types of costs are associated with MBSE adoption?
 - Process definition, model-related, infrastructure, training
- 4. What resources are available for program offices wishing to transition to MBSE?
 - 5 processes, 13 software tools, 41 training resources

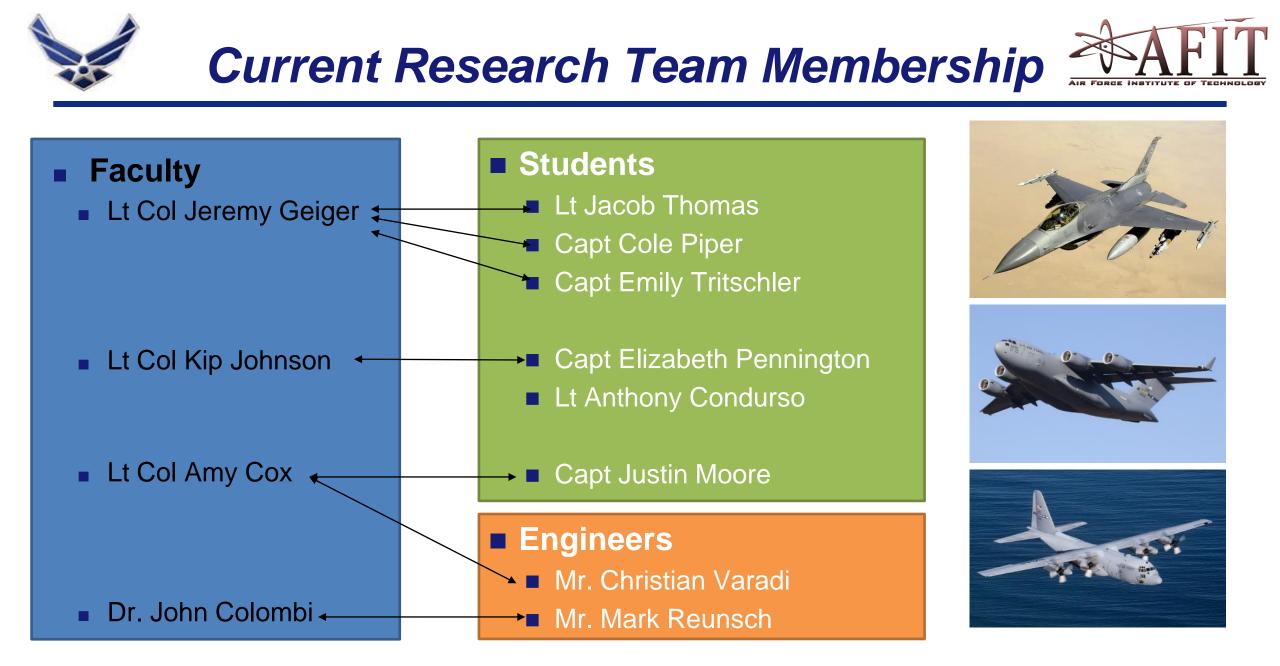
- Significant Interest in this Effort
- Need to Expand single data point
 - Resources, Time, Program Size, Program Lifecycle Phase, Classification,


Research Team Objectives:

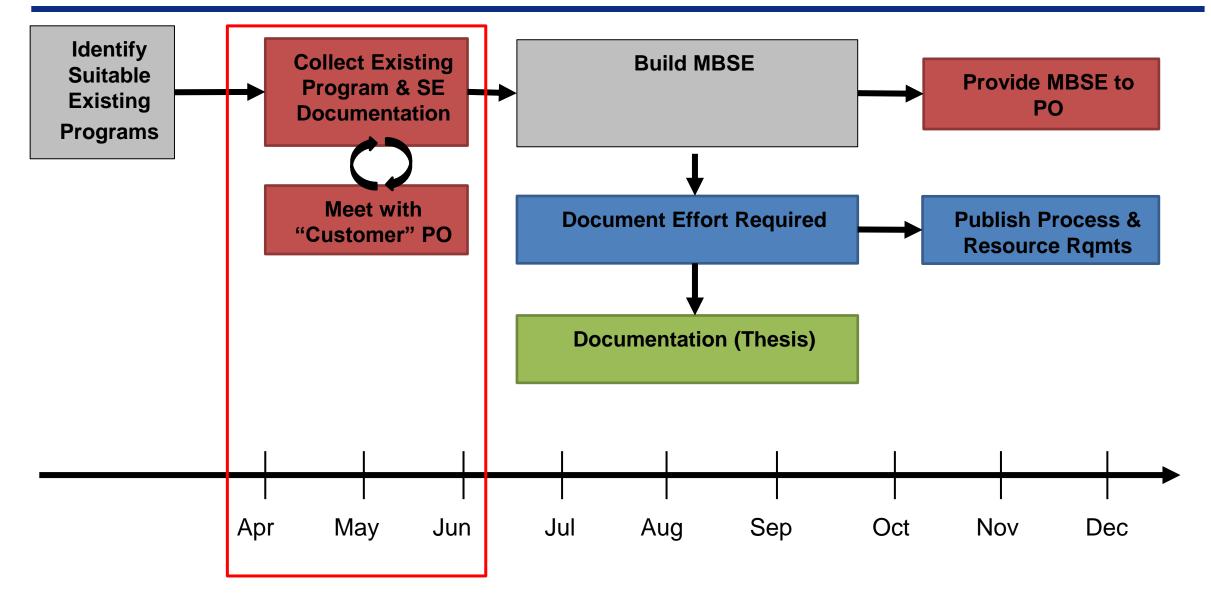
- Identify "best" software tools
- Identify training requirements
- Identify resources (time / cost / effort) required to transition
- Disseminate research findings to community in timely manner

And the Process Continues...

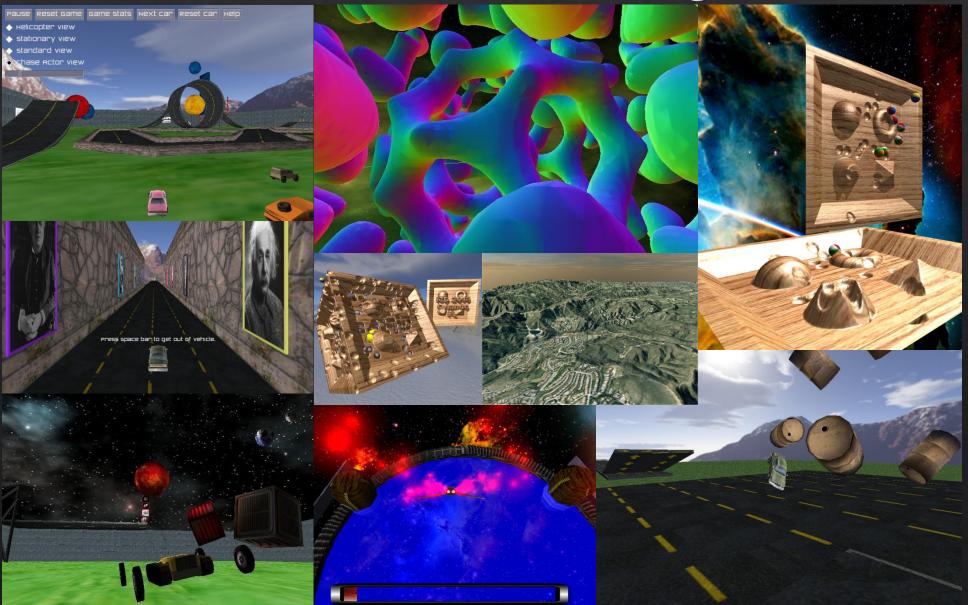




And the Process Continues...

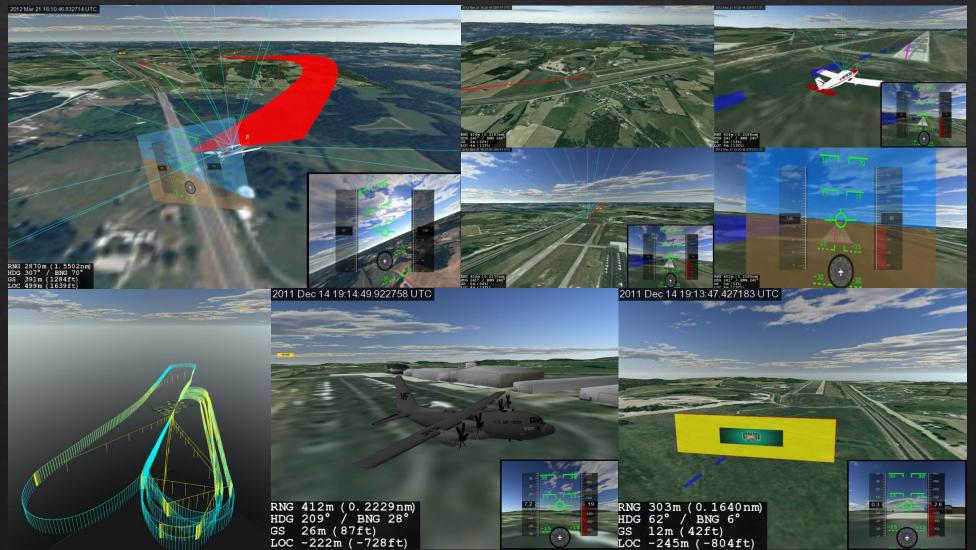


And the Process Continues...



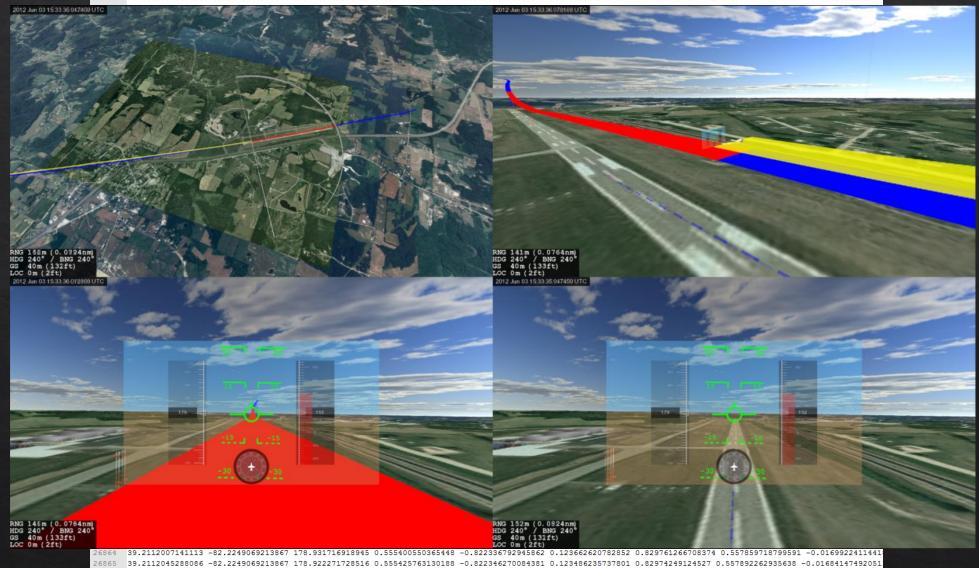
Questions

"Using 3D Digital Twins for Computer Vision Research and Cyber Education" Air Force Institute of Technology (AFIT) Dayton Digital Summit <u>scott.nykl@afit.edu</u> 12 May 2023 Youtube.com/scottnykl Dr. Scott Nykl



Visualization digests complexity, lets one absorb knowledge

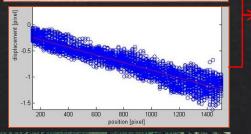
3


Virtual Worlds naturally map to 3D geospatial information.

Humans Perceive Data Visually

 26811
 39.2112007141113
 -82.2249069213867
 178.958694458008
 0.55569064617157
 -0.822189390659332
 0.12333932518959
 0.82952344417572
 0.558241546154022
 -0.0160381775349379

 26812
 39.2112007141113
 -82.2249069213867
 178.949188232422
 0.555799186229706
 -0.822088003158569
 0.123525843024254
 0.829448819160461
 0.558349192142487
 -0.0161486975848

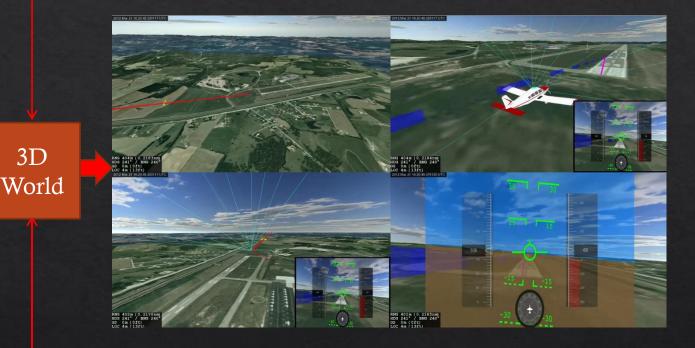


213	PG31	-25694	4.53966	5 71	44.77556	4 -94	2.923902	2	220.917280	5	13	14	160
214	PG32	1814	6.24965	8 200	81.21932	8 -1730	4.134256	-4	121.813321	9	10	9	224
215	* 21	012 3	18 13	30 0.	00000000								
216	PG01	-1325	5.85913	5 163	06.10885	5 -2093	0.742101	. 2	34.675315	11	9	13	202
217	PG02	21721	7.15975	2 -136	56.95872	4 581	9.355187	3	383.271923	9	7	11	212
218	PG03	-10804	4.40583	4 192	17.47635	5 1414	9.939824		24.058314	10	5	8	204
219	PG04	25566	6.07686	4 -61	57.00751	9 -504	7.923113	1	L26.545147	7	8	9	225
220	PG05	11626	6.26677	7 -103	54.25267	3 2150	1.268922	-2	295.116098	7	6	5	221
221	PG06	-13881	1.05964	3 149	25.55006	5 1700	9.903837		31.937055	8	- 4	6	211
222	PG07	13633	3.33947	9 97	78.99723	3 2066	9.730759		65.356556	7	7	6	207
223	PG08	23260	0.45887	9 21	59.18315	7 1323	2.540766		0.836494	7	10	3	202
224	PG09	5708	8.83151	3 -168	78.01892	7 -2025	8.600416	1	45.546584	11	8	14	187
225	PG10	22410	0.87476	5 65	88.53076	9 1275	2.959957	-	-32.646633	9	11	7	210
226	PG11	-5568	8.12167	4 205	56.86270	3 -1605	8.139822	-2	242.821495	8	8	11	208
227	PG12	-5052	2.16666	7 -194	50.55892	4 -1745	6.935708		58.526725	11	10	11	183
228	PG13	6869	9.91846	8 191	44.09439	9 1688	9.744006	2	18.768700	8	8	6	210
229	DG14	-14901	1 20423	4 -3	46.50030	9 -2179	8.257400	1	97 450667	11	10	10	181

			1.6	D.	4	F	9	74	1		х.	E.	MAGPO	1	1.	T.	.W.:	×	w
251342	39,21127	-82.2249	205.8411	-0.16385	0.978782	0.122995	-0.9855	-0.18577	0.013435	0.033084	-6.11906	0.592338	-1-1000	3238522	1.032109	807235	1.002+09	834212	160553
251342	19.21122	-42.2349	293.8457	-0.16295	0.978621	0.122595	-0.84591	-0.16579	0.01334	0.033364	-0.11871	6.99222	-1-1000	5259854	1.016+09	834399	1.016+09	840221	\$68532
251144	35.21127	-83.2248	203.9429	-0.16375	0.975652	0.122538	-0.90592	-0.16665	0.013672	0.034018	-0.11894	0.992554	-1-1000	3274074	1.0301409	867221	1.000+09	876222	160534
231145	\$5.21127	-82.2249	205.8452	0.16578	0.978835	0.122558	4.58551	-0.18673	0.013947	5-53063	-0.11854	0.992364	1.1000	3232905	1.092-09	875222	1.030-03	907224	240555
251346	29,21127	-03.2249	202,8443	-0.16428	0.973747	0.122744	-0.90582	-0.15721	0.012927	0.034155	-0.11872	0.992341	4-1-1000	5254922	1.05-09	967234	1.005-09	\$24225	168537
251347	59.21127	-83.2249	255.8445	-0.16428	0.975747	0.122744	-0.98582	-0.18722	0.013927	0.054155	-0.11872	0.792541	4-2000	32349955	1.032+09	987234	1.002+09	997227	146553
251108	24 31127	-43.2249	203.8462	-0.16442	0.678721	0.123694	-0.89579	-0.16737	0.054134	0.054369	-0.11862	8.942344	-1-1000	\$258972	1.016-09	657227	1.016+09	\$54228	162541
25115-09	35 21127	-82.2248	253.6463	-0.16442	0.978721	0.123594	-0.56579	-0.16737	0.004134	0.034365	-0.11953	0.392344	-1-1000	3275065	1.032-09	557227	1.032-09	7330	160543
231190	35.21127	-62.2249	223,8465	0.16457	0.978703	0.12271	-0.58577	-0.16755	0.013947	0.054204	-0.11867	0.992345	1-1000	5275022	1.095+09	72.93	1.008+09	26231	14054
	34,211,27	-02.2249	283.9451	-0.16442	0.978725	0.123641	-0.98579	-0.34734	0.03416	0.034397	-0.11857	4.99235	4-2000	3275055	1.000-09	34231	1.005+09	57223	168545
	55.21127	-82.2249	225.8451	0.16442	0.575739	0.122443	4.55575	-0.18758	0.01410	0.054387	-0.11857	0.99235	-1-2000	3275072	1.852+05	24231	1/02:09	79234	200542
	15,21127	-02.2289	253.8567	-0.16538	0.979666	0.122965	-0.88577	-0.15748	0.014156	0.054544	-0.11885	1.162307	-1-1000	3275105	1.015+09	38234	1.005+08	117225	142543
	35 21127	-82.2249	283,6535	-0.16435	0.979646	0.123190	-0.50275	-0.16757	0.014455	0.034821	-0.11906	8.992277	-1-1-0-00	3275122	1.035-05	107235	1.005109	124230	16050
	14,21127	-60.2389	323,8104	-0.16415	0.1726484	0.1221195	4.86575	-0.16757	0.010444	0.088815	-0.11996	6.962277	-1-2000	8225155	1.06409	127215	1.006+09	1572.88	140550
	18,21127	-03.3345	383,8533	-0.16447	0.979673	0.129308	-1.90577	-0.18748	0.014529	6-034833	-0.11895	0.982289	4-1000	3275172	1.836+09	157238	1.000109	134223	146553
	59 21127	-82,2349	203,834	-0.16495	0.535657	0.123947	4.58575	-5.18759	8.814335	0.054055	-611893	0.992297	1.1.000	5275285	1492-08	174235	1.008+09	257241	100554
	24,21137	-92,2249	263,6555	-0.16432	0.972676	0.122905	4.965%	-0.16752	0.004544	0.03664	-0.11882	1:992265	-1-0000	\$275222	125-09	207241	1.055-09	226242	162554
	25 21127	-82.2249	203.0354	-0.16461	0.975682	0.123826	-0.33575	-0.18702	0.014439	0.054718	-0.1387	0.992523	-1-2000	3275255	1.655105	234242	1.032+05	257244	14055
151,040	14 211.27	-03.254W	201.857	-0.16863	0.9787	0.123676	4.86575	-0.16759	0.014341	0.054544	-0.11857	0.542543	1.000	\$275277	1.016+09	257245	1.016+09	226240	142514
251382	35,21127	-83.2249	283.8575	-0.16400	0.970666	0.122543	-0.90574	-0.16766	0.014183	0.034478	-0.11875	0.982325	-1-2000	5275365	1.000+09	274245	1.000-09	307547	168562
231382	84,21127		201,8189	-0.16502	0.9700.08	0.122216	4.5045	-0.14000		DOMASNA	011846		4.4.4.4.6	\$275322	1.09100	107247	1.012+05	1212245	140167

No. 201 YEAR OLD THE STREET

A CAN- BE LEDIN



Unification of Sensor Fusion

Disparate, non-uniform inputs \rightarrow Coherent, naturally understandable virtual world, real-time updates

Video – Virt World mirror Real World, in Real Time

- ♦ Affine RT Link.mp4
- ♦ Reduce Bandwidth
- ♦ Leverage a-priori information
- ♦ New abilities possible w/ common frame & viz (sat LOS intuition)

Automated Aerial Refueling

 Relative Positioning using Stereo Vision
 GPS-Denied

9

Environments

 Jenu
 Sensor's Display Matrix with Position (Local Frame)

 | 0.0002.0.0000
 -0.4226

 | 0.0002.0.0000
 -0.225

 | 0.4226
 0.0000

 | 0.0000
 0.0000

 | 0.0000
 0.0000

 | 0.0000
 0.0000

 | 0.0000
 0.0000

 | 0.0000
 0.0000

 | 0.0000
 0.0000

 Reset Sensor DCM
 Reset Model DCM
 Passing sensor's DCM to AftrCoordinateTransforms::transformFromDisplayMatrixToRollPitchYaw(WOAlpha Reference Frame Options 🔵 Global Frame 🦳 LTP Frame Camera Frame Mutator Camera Reference Frame Options
 Global Frame
 LTP Frame 🔵 Standard EZ Nav 🔵 Chase Actor WGS 84 Smoother Jump to Tanker Sensor in LTP Frame Logfile Data Playback Settings
 Open and (re)play a Recevier Approach via Log File ./logs/simple_relative_approach_vw/RelativeRecv.txt Specify log file Parse File Play / (Re)Start File Jump To: 20457 0.00000000 Jump to Idx Jump to Percentage Point Registration -- Iterative Closest Point (ICP) V ICP Enabled 1.00 Sensed Pt Sz Num Sensed Pts: 1920, Num Truth Pts: 1011.

Actual Receiver Position is: (21.508, -0.250, 3.265) Actual Receiver RPY is (0.600, -27.593, 180.600) Error Trans (0.603, -0.230, -0.009) Error RPY (0.877, 0.996, 0.049) Error RPY (0.877, 0.976, 0.049) Dirbitor average (0.445, 0.047, -0.273), RPPOg: (-48.556, 6.094, 8.871), RMS Dirbitor average (0.845, 0.047, -0.273), RPPOg: (-48.556, 6.094, 8.871), RMS

: (0.003, -0.039, 0.009) : (0.877, 0.996, 0.049)

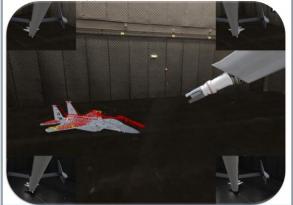
Automated Aerial Refueling
Stereo Vision for Relative Navigation
Real Time 3D Virtual Worlds
Modeling & Simulation
Synthetic Sensor Generation & Real Time Analysis

Error RPY

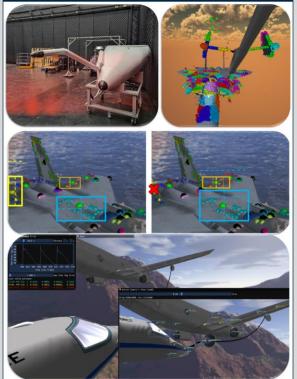
Towards Autonomous Aerial Refueling

AFIT's DoD Leading Research into Autonomous Refueling for USAF Boom and Probe-N-Drogue

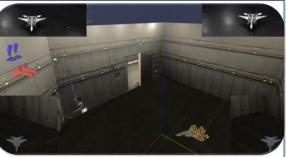
AFIT is developing stereo and monocular visual relative navigation algorithms for pose estimation. These algorithms enable Autonomous Aerial Refueling systems to safely approach, connect, and transfer fuel between a tanker and receiver.

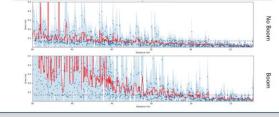

Background

- With more RPAs in the Air Force, automatic refueling would improve mission capabilities
- Object detection using Convolutional Neural Networks (CNNs) have improved significantly in previous years, enabling their usage in 6DoF Pose estimation.



eatur


Detect 2D key-points → Solve PnP → Get Pose Estimate


Digital Twin & 3D Augmented Reality

Results: >7cm position error @ 15m

CONTACT Dr Scott Nykl scott.nykl@afit.edu

How does one automate Aerial Refueling?

Vision Sensor / Grad student

Automated Aerial Refueling SOLVED???

Edwards AFB

2016, 2019

EO & LWIR Flight Tests \$\$\$ Hard Approximate

DEMO: Stereo Vision AAR

▼ Menu

Drogue Controller

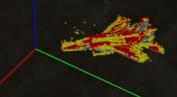
and an and a start of the

Show Left/Right Tex	Dock Location: O Top Botto	
▼ Load Existing Calibr		l en view fructel
	alibration (no mod to WOSVS [R t hadows\aarViz2020 Leon\calib\2K	J or view frusta): Virtual_Cal_Leon.yml Specify OpenC
		ensor [R t] + view frusta params: Virtual_Cal_Leon.yml Specify Full
Load OpenCV Only Lo	ad OpenCV + WOSVS Calib	
Stop Vision Processi	ng	
► OpenCV Stereo Block	Matching Parameters	
▶ Capture Stereo Calib	ration Image Pairs	
► Compute Intrinsic /	Extrinsic Calibration using imag	ge pairs from folder:
▶ Logfile Data Playback S	Settings	
▼ Point Registration 1	Iterative Closest Point (ICP)	
Currently using only IC	POperator	
ICP Enabled		
	0.83	Truth Pt Sz
	0.83	Sensed Pt Sz
Num Sensed Pts: 1609, N	um Truth Pts: 4041.	
Sensed Receiver Positio		
Sensed Receiver RPY is		
Actual Receiver Positio	n is: (20.740, -1.200, -0.141)	
Actual Receiver RPY is	: (0.000, -2.690, -180.000)	
Error Trans	: (0.008, 0.040, -0.013)	
Error RPY	: (0.151, 0.175, 0.344)	
ICPInfo: Trans: (1.803, IterationIdx: 30	-0.456, -0.673), RPYDeg: (-0.16	67, 2.514, -0.351), RMS: 0.0451073,

Ext [0,1]

Change Tube Ext Length

Video: ISVC 0:18, 2:50



Video: Miller 3:20, 4:10, 4:50

Video: Vicon Approach

▼ Menu

 Cuda Position : (14.106, -0.175, -1.391)

 Cuda RPY : (-2.660, -22.772, -178.775)

 Actual Receiver Position: (14.127, -0.185, -1.405)

 Actual Receiver RPY : (-0.778, -23.279, -178.472)

 Error Trans : (0.020, -0.010, -0.014)

 Error RPY : (1.883, 0.507, 0.303)

 ICPInfo: Trans: (-0.218, 0.010, -0.122), RPYDeg: (2.247, 1.306, -44.958), RMS: 0.00164393, IterationIdx: 30

Application average 49.743 ms/frame (20.1 FPS)

Extrinsic Calibrations? Bumped Cameras? Occlusions? Can we overcome these?

Monocular-based Visual RelNav Approach • Convolutional Neural Networks (CNN)

Active Camera	's View (cam1)			
		0.40		Size
rig:2048x1080,	Cur:768x405			
			1	

Air Force Materiel Command

Digital Materiel Management Keynote

MISSION

Powering the

world's

greatest

Air Force...

We develop,

deliver,

support, and

sustain war-

winning

capabilities.

AFMC Strategy Map

Our Cross-Cutting Attributes

Speed • Strength • Endurance • Balance • Flexibility • Coordination

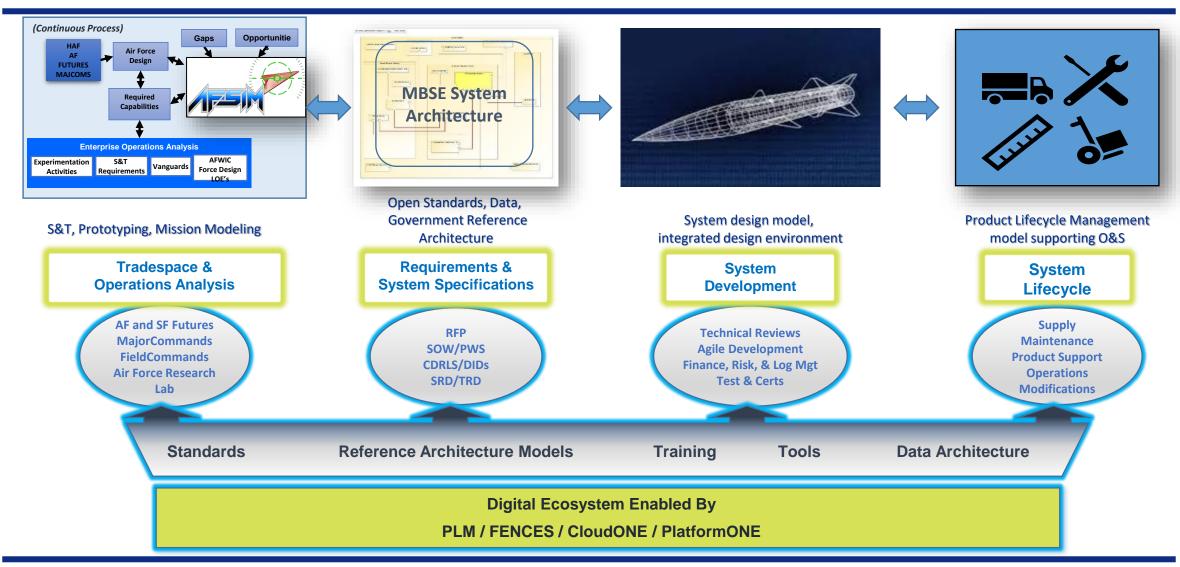
Our Commitments Enable DAF Priorities • Support the Warfighter & Respect the Taxpayer • Focus on Enterprise Solutions & Digital Materiel Management • Provide All Airmen the Opportunity to Reach Full Potential • Embrace Innovation

Our Lines of Effort

LOE 1 What	Deliver Integrated Capabilities	Integrate research, development, test, sustainment, support, and infrastructure to maximize readiness and lethality for each capability and across all capabilities.
Dbjectives	 ready anytime and anywhere aga Deliver the Future Force: Create Team approaches. Seek DAF Enterprise Solutions defer to unique solutions only who 	e future threat-informed capabilities that deter and disrupt our adversaries using integrated intra- and inter-center One Through intra- and inter-center integration and coordination, deploy DAF enterprise solutions to the max extent and
.OE 2 Who	Strengthen Our Team	Advance the professional and personal development, retention, resilience, and innovation of our workforce so every AFMC Airman and Guardian can achieve their full potential.
Dbjectives	 Entrust Decisions to Lower Lever the empower our people regardless of Build Full Potential Teammates goals, removing barriers concerning barriers concern	ers able to create an environment where team members can professionally and personally thrive. vels: Push responsibilities and decision-making to trained-and-ready lower levels within the command chain and of rank or grade. S: Provide intentional opportunities for uniformed and civilian team members to achieve their professional and personal ing diversity, equity, inclusion, and accessibility. S: Embed our cross-cutting attributes into our accessions and retention processes for world-class, end-to-end
LOE 3 How	Revolutionize Our Processes	Implement Enterprise Solutions, Digital Materiel Management, and other methods to revolutionize critical processes in support of mission execution and the warfighter.
Objectives	 coordination in AFMC's ability to Employ Digital Materiel Manage 	erprise: Inculcate internal processes that activate innovation, speed, strength, endurance, balance, flexibility, and deliver capabilities on relevant timelines in spite of fluid threat environments. ement: Ensure critical processes employ digital methods across the entire lifecyclefrom invention to retirementfor ell as installation and mission support capabilities.
LOE 4 Why	Amplify Warfighting Culture	Connect every AFMC Airman and Guardian to the mission and focus the materiel enterprise on delivering capabilities and services in support of operational execution and deterrence.
Objectives	 Connect to the Mission: Ensure operational units we support. 	every team member and unit understands their role, value, and connection in materiel capability delivery to the

Be the Trusted Partner: Drive toward the speed of trust with one another, the warfighter, industry, and our mission partners.

VISION

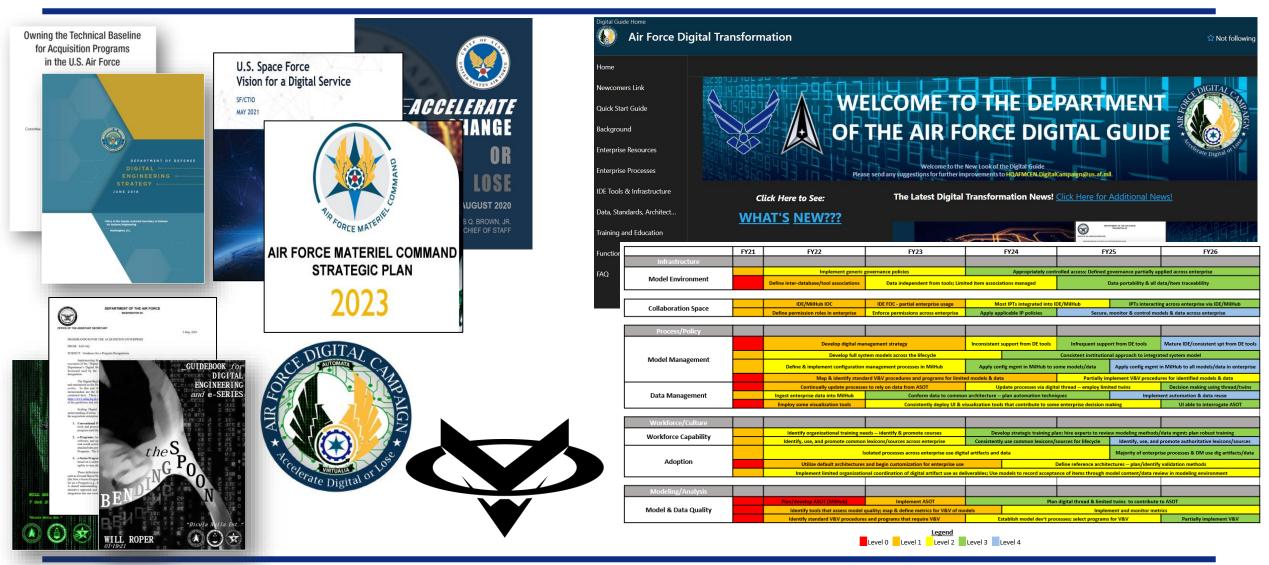

One AFMC-integrated, collaborative, innovative, trusted, and empowered...

Indispensable to our Nation, disruptive to our adversaries.

Digital Lifecycle

One AFMC...Powering the World's Greatest Air Force

Access to tools: Expand cloud hosted tool environment


Partnered w/AFLCMC/HN to scale Enterprise Solution tool offering to programs

<u>Training</u>: AFIT Digital Innovation and Integration Center of Excellence

- Partnered w/AFIT to scale training & education offerings; program execution support
- Culture: Continued analysis and intentional design
 - Leadership focused Digital Masterclass; continue outreach/culture design work
- Strategies: Facilitated program workshop and support
 - Partnering w/Digital Enterprise Launch Team for Acquisition (DELTA) to facilitate program strategy sessions
- Structure and Secure our Data: Standard data formats, structures, modeling styles
- Modernize IT Infrastructure: Improved Authority to Operate (ATO), Evaluated Product List (EPL) processes

Gov't/Industry Interactions

One AFMC...Powering the World's Greatest Air Force

